Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 16(19): 9412-9425, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38650478

RESUMO

Nanotechnology has the potential to provide formulations of antitumor agents with increased selectivity towards cancer tissue thereby decreasing systemic toxicity. This in vivo study evaluated the potential of novel nanoformulation based on poly(lactic-co-glycolic acid) (PLGA) to reduce the cardiotoxic potential of doxorubicin (DOX). In vivo toxicity of PLGADOX was compared with clinically approved non-PEGylated, liposomal nanoformulation of DOX (LipoDOX) and conventional DOX form (ConvDOX). The study was performed using Wistar Han rats of both sexes that were treated intravenously for 28 days with 5 doses of tested substances at intervals of 5 days. Histopathological analyses of heart tissues showed the presence of myofiber necrosis, degeneration processes, myocytolysis, and hemorrhage after treatment with ConvDOX, whereas only myofiber degeneration and hemorrhage were present after the treatment with nanoformulations. All DOX formulations caused an increase in the troponin T with the greatest increase caused by convDOX. qPCR analyses revealed an increase in the expression of inflammatory markers IL-6 and IL-8 after ConvDOX and an increase in IL-8 expression after lipoDOX treatments. The mass spectra imaging (MSI) of heart tissue indicates numerous metabolic and lipidomic changes caused by ConvDOX, while less severe cardiac damages were found after treatment with nanoformulations. In the case of LipoDOX, autophagy and apoptosis were still detectable, whereas PLGADOX induced only detectable mitochondrial toxicity. Cardiotoxic effects were frequently sex-related with the greater risk of cardiotoxicity observed mostly in male rats.


Assuntos
Cardiotoxicidade , Doxorrubicina , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos Wistar , Doxorrubicina/química , Doxorrubicina/farmacologia , Doxorrubicina/análogos & derivados , Animais , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Ratos , Masculino , Cardiotoxicidade/prevenção & controle , Feminino , Apoptose/efeitos dos fármacos , Nanopartículas/química , Miocárdio/patologia , Miocárdio/metabolismo , Polietilenoglicóis/química , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacologia , Coração/efeitos dos fármacos , Lipossomos/química
2.
Part Fibre Toxicol ; 18(1): 38, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663357

RESUMO

BACKGROUND: Silver nanoparticles (AgNPs) are widely used in biomedicine due to their strong antimicrobial, antifungal, and antiviral activities. Concerns about their possible negative impacts on human and environmental health directed many researchers towards the assessment of the safety and toxicity of AgNPs in both in vitro and in vivo settings. A growing body of scientific information confirms that the biodistribution of AgNPs and their toxic effects vary depending on the particle size, coating, and dose as well as on the route of administration and duration of exposure. This study aimed to clarify the sex-related differences in the outcomes of oral 28 days repeated dose exposure to AgNPs. METHODS: Wistar rats of both sexes were gavaged daily using low doses (0.1 and 1 mg Ag/kg b.w.) of polyvinylpyrrolidone (PVP)-coated small-sized (10 nm) AgNPs. After exposure, blood and organs of all rats were analysed through biodistribution and accumulation of Ag, whereas the state of the liver and kidneys was evaluated by the levels of reactive oxygen species (ROS) and glutathione (GSH), catalase (CAT) activity, superoxide dismutase (SOD) and glutathione peroxidase (GPx), expression of metallothionein (Mt) genes and levels of Mt proteins. RESULTS: In all animals, changes in oxidative stress markers and blood parameters were observed indicating the toxicity of AgNPs applied orally even at low doses. Sex-related differences were noticed in all assessed parameters. While female rats eliminated AgNPs from the liver and kidneys more efficiently than males when treated with low doses, the opposite was observed for animals treated with higher doses of AgNPs. Female Wistar rats exposed to 1 mg PVP-coated AgNPs/kg b.w. accumulated two to three times more silver in the blood, liver, kidney and hearth than males, while the accumulation in most organs of digestive tract was more than ten times higher compared to males. Oxidative stress responses in the organs of males, except the liver of males treated with high doses, were less intense than in the organs of females. However, both Mt genes and Mt protein expression were significantly reduced after treatment in the liver and kidneys of males, while they remained unchanged in females. CONCLUSIONS: Observed toxicity effects of AgNPs in Wistar rats revealed sex-related differences in response to an oral 28 days repeated exposure.


Assuntos
Nanopartículas Metálicas , Povidona , Animais , Feminino , Masculino , Nanopartículas Metálicas/toxicidade , Polivinil , Povidona/toxicidade , Ratos , Ratos Wistar , Prata/toxicidade , Distribuição Tecidual
3.
J Biol Inorg Chem ; 26(7): 817-831, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34476609

RESUMO

The interaction of silver nanoparticles (AgNPs) with the immune system has not yet been sufficiently elucidated even though they belong to the most investigated and exploited group of nanomaterials. This study aimed to evaluate immunomodulatory effect of four different AgNPs on human peripheral blood mononuclear cells (hPBMCs). Fresh hPBMCs were exposed to the small sized (~ 10 nm) AgNPs immediately after isolation from the whole blood of healthy volunteers. The study considered coating-, time- and dose-dependent response of hPBMSc and stimulation of both early and intermediate activation of lymphocytes and monocytes using flow cytometry. The AgNPs differed in surface charge and were stabilised with polyvinyl pyrrolidone (PVP), poly-L-lysine (PLL), bis(2-ethylhexyl) sulfosuccinate sodium (AOT) or blood serum albumin (BSA). Response of hPBMCs to coating agents and ionic Ag form was evaluated to distinguish their effect from the AgNPs action as they may be released from the nanosurface. There was no significant effect of any tested AgNPs on relative count of hPBMCs subpopulations. The T-cells and monocytes were not activated after treatment with AgNPs, but the highest concentration of PLL- and BSA-AgNPs decreased density of CD4 and CD8 markers on T-helper and T-cytotoxic cells, respectively. The same AgNPs activated B- and NK-cells. Ionic Ag activated T-, B- and NK-cells, but at very higher concentration, whereas only PLL exhibited immunomodulatory activity. This study evidenced immunomodulatory activity of AgNPs that may be fine-tuned by the design of their surface functionalization.


Assuntos
Nanopartículas Metálicas , Prata , Citometria de Fluxo , Humanos , Leucócitos Mononucleares , Tamanho da Partícula , Povidona , Prata/farmacologia
4.
J Pharm Sci ; 110(5): 2250-2261, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33539871

RESUMO

Silver nanoparticles (AgNP) can be found in different consumer products and various medical devices due to their excellent biocidal properties. Despite extensive scientific literature reporting biological effects of AgNP, there is still a lack of scientific evidence on how different surface functionalization affects AgNP interaction with the human skin and the oral epithelium. This study aimed to investigate biological consequences following the treatment of HaCaT and TR146 cells with AgNP stabilized with negatively charged sodium bis(2-ethylhexyl)-sulfosuccinate (AOT), neutral polyvinylpyrrolidone (PVP), and positively charged poly-l-lysine (PLL). All AgNP were characterized by means of size, shape and surface charge. Interactions with biological barriers were investigated in vitro by determining cell viability, particle uptake, oxidative stress response and DNA damages following AgNP treatment. Results showed a significant difference in cytotoxicity depending on the surface coating used for AgNP stabilization. All three types of AgNP induced apoptosis, oxidative stress response and DNA damages in cells, but AOT- and PVP-coated AgNP exhibited lower toxicity than positively charged PLL-AgNP. Considering the number of data gaps related to the safe use of nanomaterials in biomedicine, this study highlights the importance of particle surface functionalization that should be considered during design and development of future AgNP-based medical products.


Assuntos
Nanopartículas Metálicas , Prata , Sobrevivência Celular , Humanos , Nanopartículas Metálicas/toxicidade , Estresse Oxidativo , Tamanho da Partícula , Povidona , Prata/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA