Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mol Med (Berl) ; 97(9): 1231-1243, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31053970

RESUMO

During infection, hepatocytes must undergo a reprioritization of metabolism, termed metabolic reprogramming. Hepatic metabolic reprogramming in response to infection begins within hours of infection, suggesting a mechanism closely linked to pathogen recognition. Following injection with polyinosinic:polycytidylic acid, a mimic of viral infection, a robust hepatic innate immune response could be seen involving the TNFα pathway at 2 h. Repeated doses led to the adoption of Warburg-like metabolism in the liver as determined by in vivo metabolic imaging, expression analyses, and metabolomics. Hepatic macrophages, Kupffer cells, were able to induce Warburg-like metabolism in hepatocytes in vitro via TNFα. Eliminating macrophages in vivo or blocking TNFα in vitro or in vivo resulted in abrogation of the metabolic phenotype, establishing an immune-metabolic axis in hepatic metabolic reprogramming. Overall, we suggest that macrophages, as early sensors of pathogens, instruct hepatocytes via TNFα to undergo metabolic reprogramming to cope with challenges to homeostasis initiated by infection. This work not only addresses a key component of end-organ physiology, but also raises questions about the side effects of biologics in the treatment of inflammatory diseases. KEY MESSAGES: • Hepatocytes develop Warburg-like metabolism in vivo during viral infection. • Macrophage TNFα promotes expression of glycolytic enzymes in hepatocytes. • Blocking this immune-metabolic axis abrogates Warburg-like metabolism in the liver. • Implications for patients being treated for inflammatory diseases with biologics.


Assuntos
Hepatócitos/metabolismo , Fígado/metabolismo , Macrófagos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Produtos Biológicos/farmacologia , Linhagem Celular Tumoral , Hepatócitos/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Homeostase/fisiologia , Humanos , Imunidade Inata/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Fígado/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL
2.
Front Neurol ; 10: 160, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30873109

RESUMO

Lipomas have often been associated with mtDNA mutations and were mainly observed in patients with mutation in mitochondrial tRNAlysine which is also the most frequent mutation associated with MERRF. Up to date, no systematic studies have been developed in order to assess the incidence of lipomas in large cohorts of mitochondrial patients.The aim of this study is to analyze the incidence and characteristics of lipomas among an Italian cohort of patients with mitochondrial diseases. A retrospective, database-based study (Nation-wide Italian Collaborative Network of Mitochondrial Diseases) of patients with lipomas was performed. A total of 22 (1.7%) patients with lipomas have been identified among the 1,300 mitochondrial patients, enrolled in the Italian database. In about 18% multiple systemic lipomatosis (MSL) was the only clinical manifestation; 54% of patients showed a classical MERRF syndrome. Myopathy, alone or in association with other symptoms, was found in 27% of patients. Lactate was elevated in all the 12 patients in which was measured. Muscle biopsy was available in 18/22 patients: in all of them mitochondrial abnormalities were present. Eighty six percent had mutations in mtDNA coding for tRNA lysine. In most of patients, lipomas were localized along the cervical-cranial-thoracic region. In 68% of the patients were distributed symmetrically. Only two patients had lipomas in a single anatomical site (1 in right arm and 1 in gluteus maximum). MSL is often overlooked by clinicians in patients with mitochondrial diseases where the clinical picture could be dominated by a severe multi-systemic involvement. Our data confirmed that MSL is a rare sign of mitochondrial disease with a strong association between multiple lipomas and lysine tRNA mutations. MSL could be considered, even if rare, a red flag for mitochondrial disorders, even in patients with an apparently isolated MSL.

3.
Hum Mol Genet ; 27(19): 3305-3312, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29917077

RESUMO

Leigh syndrome is a frequent, heterogeneous pediatric presentation of mitochondrial oxidative phosphorylation (OXPHOS) disease, manifesting with psychomotor retardation and necrotizing lesions in brain deep gray matter. OXPHOS occurs at the inner mitochondrial membrane through the integrated activity of five protein complexes, of which complex V (CV) functions in a dimeric form to directly generate adenosine triphosphate (ATP). Mutations in several different structural CV subunits cause Leigh syndrome; however, dimerization defects have not been associated with human disease. We report four Leigh syndrome subjects from three unrelated Ashkenazi Jewish families harboring a homozygous splice-site mutation (c.87 + 1G>C) in a novel CV subunit disease gene, USMG5. The Ashkenazi population allele frequency is 0.57%. This mutation produces two USMG5 transcripts, wild-type and lacking exon 3. Fibroblasts from two Leigh syndrome probands had reduced wild-type USMG5 mRNA expression and undetectable protein. The mutation did not alter monomeric CV expression, but reduced both CV dimer expression and ATP synthesis rate. Rescue with wild-type USMG5 cDNA in proband fibroblasts restored USMG5 protein, increased CV dimerization and enhanced ATP production rate. These data demonstrate that a recurrent USMG5 splice-site founder mutation in the Ashkenazi Jewish population causes autosomal recessive Leigh syndrome by reduction of CV dimerization and ATP synthesis.


Assuntos
Doença de Leigh/genética , Mitocôndrias/genética , Doenças Mitocondriais/genética , ATPases Mitocondriais Próton-Translocadoras/genética , Trifosfato de Adenosina/biossíntese , Criança , Pré-Escolar , Dimerização , Éxons/genética , Efeito Fundador , Frequência do Gene , Haplótipos , Humanos , Lactente , Recém-Nascido , Judeus/genética , Doença de Leigh/metabolismo , Doença de Leigh/patologia , Masculino , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Mutação , Fosforilação Oxidativa , Sítios de Splice de RNA/genética , Sequenciamento do Exoma
4.
JCI Insight ; 2(17)2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28878116

RESUMO

Cardiomyopathy frequently complicates sepsis and is associated with increased mortality. Increased cardiac oxidative stress and mitochondrial dysfunction have been observed during sepsis, but the mechanisms responsible for these abnormalities have not been determined. We hypothesized that NADPH oxidase 2 (NOX2) activation could be responsible for sepsis-induced oxidative stress and cardiomyopathy. Treatment of isolated adult mouse cardiomyocytes with low concentrations of the endotoxin lipopolysaccharide (LPS) increased total cellular reactive oxygen species (ROS) and mitochondrial superoxide. Elevated mitochondrial superoxide was accompanied by depolarization of the mitochondrial inner membrane potential, an indication of mitochondrial dysfunction, and mitochondrial calcium overload. NOX2 inhibition decreased LPS-induced superoxide and prevented mitochondrial dysfunction. Further, cardiomyocytes from mice with genetic ablation of NOX2 did not have LPS-induced superoxide or mitochondrial dysfunction. LPS decreased contractility and calcium transient amplitude in isolated cardiomyocytes, and these abnormalities were prevented by inhibition of NOX2. LPS decreased systolic function in mice, measured by echocardiography. NOX2 inhibition was cardioprotective in 2 mouse models of sepsis, preserving systolic function after LPS injection or cecal ligation and puncture (CLP). These data show that inhibition of NOX2 decreases oxidative stress, preserves intracellular calcium handling and mitochondrial function, and alleviates sepsis-induced systolic dysfunction in vivo. Thus, NOX2 is a potential target for pharmacotherapy of sepsis-induced cardiomyopathy.


Assuntos
Cálcio/metabolismo , Cardiomiopatias/prevenção & controle , Mitocôndrias Cardíacas/metabolismo , NADPH Oxidase 2/antagonistas & inibidores , Sepse/complicações , Animais , Cardiomiopatias/diagnóstico por imagem , Cardiomiopatias/etiologia , Modelos Animais de Doenças , Ecocardiografia , Lipopolissacarídeos/farmacologia , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Knockout , Miócitos Cardíacos/metabolismo , NADPH Oxidase 2/genética , Fosforilação Oxidativa , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
5.
PLoS One ; 11(1): e0145750, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26756466

RESUMO

Obesity and high saturated fat intake increase the risk of heart failure and arrhythmias. The molecular mechanisms are poorly understood. We hypothesized that physiologic levels of saturated fat could increase mitochondrial reactive oxygen species (ROS) in cardiomyocytes, leading to abnormalities of calcium homeostasis and mitochondrial function. We investigated the effect of saturated fat on mitochondrial function and calcium homeostasis in isolated ventricular myocytes. The saturated fatty acid palmitate causes a decrease in mitochondrial respiration in cardiomyocytes. Palmitate, but not the monounsaturated fatty acid oleate, causes an increase in both total cellular ROS and mitochondrial ROS. Palmitate depolarizes the mitochondrial inner membrane and causes mitochondrial calcium overload by increasing sarcoplasmic reticulum calcium leak. Inhibitors of PKC or NOX2 prevent mitochondrial dysfunction and the increase in ROS, demonstrating that PKC-NOX2 activation is also required for amplification of palmitate induced-ROS. Cardiomyocytes from mice with genetic deletion of NOX2 do not have palmitate-induced ROS or mitochondrial dysfunction. We conclude that palmitate induces mitochondrial ROS that is amplified by NOX2, causing greater mitochondrial ROS generation and partial depolarization of the mitochondrial inner membrane. The abnormal sarcoplasmic reticulum calcium leak caused by palmitate could promote arrhythmia and heart failure. NOX2 inhibition is a potential therapy for heart disease caused by diabetes or obesity.


Assuntos
Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/genética , Mitocôndrias/metabolismo , Miócitos Cardíacos/citologia , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/genética , Estresse Oxidativo/efeitos dos fármacos , Palmitatos/efeitos adversos , Animais , Antimicina A/química , Antioxidantes/química , Apoptose , Cálcio/metabolismo , Linhagem Celular , Transporte de Elétrons , Deleção de Genes , Ventrículos do Coração/patologia , Homeostase , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/patologia , Células Musculares/citologia , NADPH Oxidase 2 , Consumo de Oxigênio , Palmitatos/química , Proteína Quinase C/química , Espécies Reativas de Oxigênio/química , Retículo Sarcoplasmático/metabolismo , Transdução de Sinais
6.
Curr Neurol Neurosci Rep ; 15(10): 69, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26319173

RESUMO

One large group of hereditary myopathies characterized by recurrent myoglobinuria, almost invariably triggered by exercise, comprises metabolic disorders of two main fuels, glycogen and long-chain fatty acids, or mitochondrial diseases of the respiratory chain. Differential diagnosis is required to distinguish the three conditions, although all cause a crisis of muscle energy. Muscle biopsy may be useful when performed well after the episode of rhabdomyolysis. Molecular genetics is increasingly the diagnostic test of choice to discover the underlying genetic basis.


Assuntos
Mioglobinúria/metabolismo , Trifosfato de Adenosina/biossíntese , Glicogênio/metabolismo , Humanos , Mitocôndrias/metabolismo , Doenças Musculares/metabolismo , Mioglobinúria/complicações , Diálise Renal
7.
Hum Mol Genet ; 24(16): 4516-29, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25976310

RESUMO

Ataxia oculomotor apraxia type 1 (AOA1) is an autosomal recessive disease caused by mutations in APTX, which encodes the DNA strand-break repair protein aprataxin (APTX). CoQ10 deficiency has been identified in fibroblasts and muscle of AOA1 patients carrying the common W279X mutation, and aprataxin has been localized to mitochondria in neuroblastoma cells, where it enhances preservation of mitochondrial function. In this study, we show that aprataxin deficiency impairs mitochondrial function, independent of its role in mitochondrial DNA repair. The bioenergetics defect in AOA1-mutant fibroblasts and APTX-depleted Hela cells is caused by decreased expression of SDHA and genes encoding CoQ biosynthetic enzymes, in association with reductions of APE1, NRF1 and NRF2. The biochemical and molecular abnormalities in APTX-depleted cells are recapitulated by knockdown of APE1 in Hela cells and are rescued by overexpression of NRF1/2. Importantly, pharmacological upregulation of NRF1 alone by 5-aminoimidazone-4-carboxamide ribonucleotide does not rescue the phenotype, which, in contrast, is reversed by the upregulation of NRF2 by rosiglitazone. Accordingly, we propose that the lack of aprataxin causes reduction of the pathway APE1/NRF1/NRF2 and their target genes. Our findings demonstrate a critical role of APTX in transcription regulation of mitochondrial function and the pathogenesis of AOA1 via a novel pathomechanistic pathway, which may be relevant to other neurodegenerative diseases.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos)/biossíntese , Proteínas de Ligação a DNA/deficiência , Regulação para Baixo , Fibroblastos/metabolismo , Mitocôndrias/metabolismo , Fator 2 Relacionado a NF-E2/biossíntese , Proteínas Nucleares/deficiência , Fator 1 Nuclear Respiratório/biossíntese , Transdução de Sinais , Ataxia/genética , Ataxia/metabolismo , Ataxia/patologia , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Proteínas de Ligação a DNA/genética , Feminino , Fibroblastos/patologia , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/metabolismo , Doenças Genéticas Inatas/patologia , Humanos , Masculino , Mitocôndrias/patologia , Fator 2 Relacionado a NF-E2/genética , Proteínas Nucleares/genética , Fator 1 Nuclear Respiratório/genética
8.
JAMA Neurol ; 72(6): 666-75, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25844556

RESUMO

IMPORTANCE: The important depletion of mitochondrial DNA (mtDNA) and the general depression of mitochondrial respiratory chain complex levels (including complex II) have been confirmed, implying an increasing paucity of mitochondria in the muscle from patients with types I, II, and III spinal muscular atrophy (SMA-I, -II, and -III, respectively). OBJECTIVE: To investigate mitochondrial dysfunction in a large series of muscle biopsy samples from patients with SMA. DESIGN, SETTING, AND PARTICIPANTS: We studied quadriceps muscle samples from 24 patients with genetically documented SMA and paraspinal muscle samples from 3 patients with SMA-II undergoing surgery for scoliosis correction. Postmortem muscle samples were obtained from 1 additional patient. Age-matched controls consisted of muscle biopsy specimens from healthy children aged 1 to 3 years who had undergone analysis for suspected myopathy. Analyses were performed at the Neuromuscular Unit, Istituto di Ricovero e Cura a Carattere Scientifico Foundation Ca' Granda Ospedale Maggiore Policlinico-Milano, from April 2011 through January 2015. EXPOSURES: We used histochemical, biochemical, and molecular techniques to examine the muscle samples. MAIN OUTCOMES AND MEASURES: Respiratory chain activity and mitochondrial content. RESULTS: Results of histochemical analysis revealed that cytochrome-c oxidase (COX) deficiency was more evident in muscle samples from patients with SMA-I and SMA-II. Residual activities for complexes I, II, and IV in muscles from patients with SMA-I were 41%, 27%, and 30%, respectively, compared with control samples (P < .005). Muscle mtDNA content and cytrate synthase activity were also reduced in all 3 SMA types (P < .05). We linked these alterations to downregulation of peroxisome proliferator-activated receptor coactivator 1α, the transcriptional activators nuclear respiratory factor 1 and nuclear respiratory factor 2, mitochondrial transcription factor A, and their downstream targets, implying depression of the entire mitochondrial biogenesis. Results of Western blot analysis confirmed the reduced levels of the respiratory chain subunits that included mitochondrially encoded COX1 (47.5%; P = .004), COX2 (32.4%; P < .001), COX4 (26.6%; P < .001), and succinate dehydrogenase complex subunit A (65.8%; P = .03) as well as the structural outer membrane mitochondrial porin (33.1%; P < .001). Conversely, the levels of expression of 3 myogenic regulatory factors-muscle-specific myogenic factor 5, myoblast determination 1, and myogenin-were higher in muscles from patients with SMA compared with muscles from age-matched controls (P < .05). CONCLUSIONS AND RELEVANCE: Our results strongly support the conclusion that an altered regulation of myogenesis and a downregulated mitochondrial biogenesis contribute to pathologic change in the muscle of patients with SMA. Therapeutic strategies should aim at counteracting these changes.


Assuntos
DNA Mitocondrial/metabolismo , Mitocôndrias/metabolismo , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/metabolismo , Atrofia Muscular Espinal/metabolismo , Adolescente , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Músculo Quadríceps/metabolismo
9.
Mol Genet Metab ; 110(3): 290-6, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23916420

RESUMO

Late onset Pompe disease (LOPD) is a rare muscle disorder often characterized, along the disease course, by severe respiratory failure. We describe herein respiratory muscles and lung abnormalities in LOPD patients using MR imaging and CT examinations correlated to pulmonary function tests. Ten LOPD patients were studied: 6 with a limb-girdle muscle weakness, 1 with myalgias, 2 with exertional dyspnoea and 1 with isolated hyperckemia. Respiratory function was measured using forced vital capacity (FVC) in both upright and supine positions, maximal inspiratory pressure (MIP), maximal expiratory pressure (MEP) and peak cough flow (PCF) tests. The involvement (atrophy) of diaphragms, abdominal respiratory muscles and intercostal muscles was ranked by CT and MRI examinations using appropriate scales. Height of lungs and band-like atelectasis presence were also recorded. Seven out of 10 patients showed a functional diaphragmatic weakness (FVC drop percentage >25%). In 8 out of 10 patients, involvement of both diaphragms and of other respiratory muscles was seen. The mean height of lungs in patients was significantly reduced when compared to a control group. Marked elevation of the diaphragms (lung height < 15 cm) was also seen in 6 patients. Multiple unilateral or bilateral band-like atelectasis were found in 4 patients. Statistically significant correlations were found between diaphragm atrophy grading, evaluated by MRI and CT, and FVC in supine position, FVC drop percentage passing from upright to supine position, PCF and MIP. Our data showed that diaphragm atrophy, often associated to reduced lung height and band-like atelectasis, can be considered the CT-MRI hallmark of respiratory insufficiency in LOPD patients. Early recognition of respiratory muscles involvement, using imaging data, could allow an early start of enzyme replacement therapy (ERT) in LOPD.


Assuntos
Doença de Depósito de Glicogênio Tipo II/diagnóstico , Imageamento por Ressonância Magnética , Músculos Respiratórios/patologia , Músculos Respiratórios/fisiopatologia , Tomografia Computadorizada por Raios X , Adolescente , Adulto , Idade de Início , Idoso , Biópsia , Criança , Feminino , Doença de Depósito de Glicogênio Tipo II/patologia , Doença de Depósito de Glicogênio Tipo II/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Testes de Função Respiratória , Adulto Jovem
10.
J Neurol ; 259(7): 1358-65, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22231866

RESUMO

GNE myopathy (MIM 600737) is an autosomal recessive muscle disease caused by mutations in the UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) gene. Besides the typical phenotype, characterized by the initial involvement of the distal leg muscles that eventually spreads proximally with sparing of the quadriceps, uncommon presentations with a non-canonical clinical phenotype, unusual muscle biopsy findings or both are increasingly recognized. The aim of our study was to characterize the imaging pattern of pelvic and lower limb muscles in GNE myopathy, thus providing additional diagnostic clues useful in the identification of patients with atypical features. We retrospectively evaluated muscle MRI and CT scans of a cohort of 13 patients heterogeneous for GNE mutations and degree of clinical severity. We found that severe involvement of the biceps femoris short head and, to a lesser extent, of the gluteus minimus, tibialis anterior, extensor hallucis and digitorum longus, soleus and gastrocnemius medialis was consistently present even in patients with early or atypical disease. The vastus lateralis, not the entire quadriceps, was the only muscle spared in advanced stages, while the rectus femoris, vastus intermedius and medialis showed variable signs of fatty replacement. Younger patients showed hyperintensities on T2-weighted sequences in muscles with a normal or, more often, abnormal T1-weighted signal. Our results define a pattern of muscle involvement that appears peculiar to GNE myopathy. Although these findings need to be further validated in a larger cohort, we believe that the recognition of this pattern may be instrumental in the initial clinical assessment of patients with possible GNE myopathy.


Assuntos
Complexos Multienzimáticos/genética , Músculos/patologia , Doenças Musculares/diagnóstico , Adulto , Estudos de Coortes , Feminino , Predisposição Genética para Doença/genética , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Músculos/diagnóstico por imagem , Doenças Musculares/genética , Mutação/genética , Tomografia Computadorizada por Raios X , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA