Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(24)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38139161

RESUMO

Persistent host inflammatory and immune responses to biofilm play a critical role in the mechanisms that govern soft and hard tissue destruction in periodontal disease. Among the less explored facets of these mechanisms are chemokines, including CCL5 (C-C motif chemokine ligand 5), also known as RANTES (regulated on activation, normal T cell expressed and secreted), a proinflammatory CC subfamily chemokine synthesized by T lymphocytes. Despite its importance, there is currently no comprehensive review of the role of CCL5 in periodontitis in the literature. Therefore, this paper aims to fill this gap by summarizing the existing knowledge on the involvement of CCL5 in the onset and progression of periodontitis. In addition, we aim to stimulate interest in this relatively overlooked factor among periodontitis researchers, potentially accelerating the development of drugs targeting CCL5 or its receptors. The review examines the association of CCL5 with periodontitis risk factors, including aging, cigarette smoking, diabetes, and obesity. It discusses the involvement of CCL5 in pathological processes during periodontitis, such as connective tissue and bone destruction. The data show that CCL5 expression is observed in affected gums and gingival crevicular fluid of periodontitis patients, with bacterial activity contributing significantly to this increase, but the reviewed studies of the association between CCL5 expression and periodontal disease have yielded inconclusive results. Although CCL5 has been implicated in the pathomechanism of periodontitis, a comprehensive understanding of its molecular mechanisms and significance remains elusive, hindering the development of drugs targeting this chemokine or its receptors.


Assuntos
Quimiocina CCL5 , Periodontite , Humanos , Quimiocina CCL5/metabolismo , Quimiocinas/análise , Quimiocinas CC , Líquido do Sulco Gengival , Periodontite/metabolismo , Linfócitos T/química , Animais
2.
Cancers (Basel) ; 15(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37760523

RESUMO

Acute myeloid leukemia (AML) is a type of leukemia known for its unfavorable prognoses, prompting research efforts to discover new therapeutic targets. One area of investigation involves examining extracellular factors, particularly CXC chemokines. While CXCL12 (SDF-1) and its receptor CXCR4 have been extensively studied, research on other CXC chemokine axes in AML is less developed. This study aims to bridge that gap by providing an overview of the significance of CXC chemokines other than CXCL12 (CXCR1, CXCR2, CXCR3, CXCR5, and CXCR6 ligands and CXCL14 and CXCL17) in AML's oncogenic processes. We explore the roles of all CXC chemokines other than CXCL12, in particular CXCL1 (Gro-α), CXCL8 (IL-8), CXCL10 (IP-10), and CXCL11 (I-TAC) in AML tumor processes, including their impact on AML cell proliferation, bone marrow angiogenesis, interaction with non-leukemic cells like MSCs and osteoblasts, and their clinical relevance. We delve into how they influence prognosis, association with extramedullary AML, induction of chemoresistance, effects on bone marrow microvessel density, and their connection to French-American-British (FAB) classification and FLT3 gene mutations.

3.
Cells ; 12(10)2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37408240

RESUMO

One area of cancer research is the interaction between cancer cells and immune cells, in which chemokines play a vital role. Despite this, a comprehensive summary of the involvement of C-X-C motif ligand 1 (CXCL1) chemokine (also known as growth-regulated gene-α (GRO-α), melanoma growth-stimulatory activity (MGSA)) in cancer processes is lacking. To address this gap, this review provides a detailed analysis of CXCL1's role in gastrointestinal cancers, including head and neck cancer, esophageal cancer, gastric cancer, liver cancer (hepatocellular carcinoma (HCC)), cholangiocarcinoma, pancreatic cancer (pancreatic ductal adenocarcinoma), and colorectal cancer (colon cancer and rectal cancer). This paper presents the impact of CXCL1 on various molecular cancer processes, such as cancer cell proliferation, migration, and invasion, lymph node metastasis, angiogenesis, recruitment to the tumor microenvironment, and its effect on immune system cells, such as tumor-associated neutrophils (TAN), regulatory T (Treg) cells, myeloid-derived suppressor cells (MDSCs), and macrophages. Furthermore, this review discusses the association of CXCL1 with clinical aspects of gastrointestinal cancers, including its correlation with tumor size, cancer grade, tumor-node-metastasis (TNM) stage, and patient prognosis. This paper concludes by exploring CXCL1's potential as a therapeutic target in anticancer therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Gastrointestinais , Neoplasias Hepáticas , Neoplasias Pancreáticas , Humanos , Quimiocina CXCL1 , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Relevância Clínica , Quimiocinas , Neoplasias Pancreáticas/patologia , Microambiente Tumoral , Neoplasias Pancreáticas
4.
Int J Mol Sci ; 24(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37108425

RESUMO

C-X-C motif chemokine ligand 1 (CXCL1) is a member of the CXC chemokine subfamily and a ligand for CXCR2. Its main function in the immune system is the chemoattraction of neutrophils. However, there is a lack of comprehensive reviews summarizing the significance of CXCL1 in cancer processes. To fill this gap, this work describes the clinical significance and participation of CXCL1 in cancer processes in the most important reproductive cancers: breast cancer, cervical cancer, endometrial cancer, ovarian cancer, and prostate cancer. The focus is on both clinical aspects and the significance of CXCL1 in molecular cancer processes. We describe the association of CXCL1 with clinical features of tumors, including prognosis, ER, PR and HER2 status, and TNM stage. We present the molecular contribution of CXCL1 to chemoresistance and radioresistance in selected tumors and its influence on the proliferation, migration, and invasion of tumor cells. Additionally, we present the impact of CXCL1 on the microenvironment of reproductive cancers, including its effect on angiogenesis, recruitment, and function of cancer-associated cells (macrophages, neutrophils, MDSC, and Treg). The article concludes by summarizing the significance of introducing drugs targeting CXCL1. This paper also discusses the significance of ACKR1/DARC in reproductive cancers.


Assuntos
Neoplasias da Mama , Neoplasias do Endométrio , Neoplasias Ovarianas , Neoplasias da Próstata , Neoplasias do Colo do Útero , Masculino , Humanos , Feminino , Neoplasias do Colo do Útero/genética , Ligantes , Relevância Clínica , Quimiocina CXCL1/genética , Neoplasias do Endométrio/genética , Carcinogênese , Transformação Celular Neoplásica , Receptores de Interleucina-8B , Microambiente Tumoral
5.
Int J Mol Sci ; 23(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35806156

RESUMO

CXCL1 is a CXC chemokine, CXCR2 ligand and chemotactic factor for neutrophils. In this paper, we present a review of the role of the chemokine CXCL1 in physiology and in selected major non-cancer diseases of the oral cavity and abdominal organs (gingiva, salivary glands, stomach, liver, pancreas, intestines, and kidneys). We focus on the importance of CXCL1 on implantation and placentation as well as on human pluripotent stem cells. We also show the significance of CXCL1 in selected diseases of the abdominal organs, including the gastrointestinal tract and oral cavity (periodontal diseases, periodontitis, Sjögren syndrome, Helicobacter pylori infection, diabetes, liver cirrhosis, alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), HBV and HCV infection, liver ischemia and reperfusion injury, inflammatory bowel disease (Crohn's disease and ulcerative colitis), obesity and overweight, kidney transplantation and ischemic-reperfusion injury, endometriosis and adenomyosis).


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Traumatismo por Reperfusão , Animais , Quimiocina CXCL1 , Quimiocina CXCL2 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Boca , Neutrófilos
6.
Int J Mol Sci ; 23(8)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35457023

RESUMO

This review describes the role of CXCL1, a chemokine crucial in inflammation as a chemoattractant for neutrophils, in physiology and in selected major non-cancer diseases. Due to the vast amount of available information, we focus on the role CXCL1 plays in the physiology of bones, bone marrow, muscle and the nervous system. For this reason, we describe its effects on hematopoietic stem cells, myoblasts, oligodendrocyte progenitors and osteoclast precursors. We also present the involvement of CXCL1 in diseases of selected tissues and organs including Alzheimer's disease, epilepsy, herpes simplex virus type 1 (HSV-1) encephalitis, ischemic stroke, major depression, multiple sclerosis, neuromyelitis optica, neuropathic pain, osteoporosis, prion diseases, rheumatoid arthritis, tick-borne encephalitis (TBE), traumatic spinal cord injury and West Nile fever.


Assuntos
Medula Óssea , Receptores de Interleucina-8B , Astrócitos , Quimiocina CXCL1 , Quimiocinas , Músculos
7.
Int J Mol Sci ; 23(2)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35054978

RESUMO

CXCL1 is one of the most important chemokines, part of a group of chemotactic cytokines involved in the development of many inflammatory diseases. It activates CXCR2 and, at high levels, CXCR1. The expression of CXCL1 is elevated in inflammatory reactions and also has important functions in physiology, including the induction of angiogenesis and recruitment of neutrophils. Due to a lack of reviews that precisely describe the regulation of CXCL1 expression and function, in this paper, we present the mechanisms of CXCL1 expression regulation with a special focus on cancer. We concentrate on the regulation of CXCL1 expression through the regulation of CXCL1 transcription and mRNA stability, including the involvement of NF-κB, p53, the effect of miRNAs and cytokines such as IFN-γ, IL-1ß, IL-17, TGF-ß and TNF-α. We also describe the mechanisms regulating CXCL1 activity in the extracellular space, including proteolytic processing, CXCL1 dimerization and the influence of the ACKR1/DARC receptor on CXCL1 localization. Finally, we explain the role of CXCL1 in cancer and possible therapeutic approaches directed against this chemokine.


Assuntos
Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo , Regulação da Expressão Gênica , Regiões Promotoras Genéticas , Transporte Proteico , Estabilidade de RNA , Animais , Biomarcadores , Proteínas de Transporte , Suscetibilidade a Doenças , Humanos , Hipóxia/genética , Hipóxia/metabolismo , Espaço Intracelular , Especificidade de Órgãos , Ligação Proteica , Proteólise , Interferência de RNA
8.
Int J Mol Sci ; 21(20)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076281

RESUMO

CC chemokines (or ß-chemokines) are 28 chemotactic cytokines with an N-terminal CC domain that play an important role in immune system cells, such as CD4+ and CD8+ lymphocytes, dendritic cells, eosinophils, macrophages, monocytes, and NK cells, as well in neoplasia. In this review, we discuss human CC motif chemokine ligands: CCL1, CCL3, CCL4, CCL5, CCL18, CCL19, CCL20, CCL21, CCL25, CCL27, and CCL28 (CC motif chemokine receptor CCR5, CCR6, CCR7, CCR8, CCR9, and CCR10 ligands). We present their functioning in human physiology and in neoplasia, including their role in the proliferation, apoptosis resistance, drug resistance, migration, and invasion of cancer cells. We discuss the significance of chemokine receptors in organ-specific metastasis, as well as the influence of each chemokine on the recruitment of various cells to the tumor niche, such as cancer-associated fibroblasts (CAF), Kupffer cells, myeloid-derived suppressor cells (MDSC), osteoclasts, tumor-associated macrophages (TAM), tumor-infiltrating lymphocytes (TIL), and regulatory T cells (Treg). Finally, we show how the effect of the chemokines on vascular endothelial cells and lymphatic endothelial cells leads to angiogenesis and lymphangiogenesis.


Assuntos
Quimiocinas CC/metabolismo , Neoplasias/metabolismo , Receptores CCR/metabolismo , Animais , Proliferação de Células , Humanos , Neoplasias/patologia , Transdução de Sinais , Microambiente Tumoral
9.
Int J Mol Sci ; 21(16)2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32781743

RESUMO

Hypoxia, i.e., oxygen deficiency condition, is one of the most important factors promoting the growth of tumors. Since its effect on the chemokine system is crucial in understanding the changes in the recruitment of cells to a tumor niche, in this review we have gathered all the available data about the impact of hypoxia on ß chemokines. In the introduction, we present the chronic (continuous, non-interrupted) and cycling (intermittent, transient) hypoxia together with the mechanisms of activation of hypoxia inducible factors (HIF-1 and HIF-2) and NF-κB. Then we describe the effect of hypoxia on the expression of chemokines with the CC motif: CCL1, CCL2, CCL3, CCL4, CCL5, CCL7, CCL8, CCL11, CCL13, CCL15, CCL16, CCL17, CCL18, CCL19, CCL20, CCL21, CCL22, CCL24, CCL25, CCL26, CCL27, CCL28 together with CC chemokine receptors: CCR1, CCR2, CCR3, CCR4, CCR5, CCR6, CCR7, CCR8, CCR9, and CCR10. To better understand the effect of hypoxia on neoplastic processes and changes in the expression of the described proteins, we summarize the available data in a table which shows the effect of individual chemokines on angiogenesis, lymphangiogenesis, and recruitment of eosinophils, myeloid-derived suppressor cells (MDSC), regulatory T cells (Treg), and tumor-associated macrophages (TAM) to a tumor niche.


Assuntos
Quimiocinas/metabolismo , Neoplasias/metabolismo , Receptores CCR/metabolismo , Hipóxia Tumoral , Humanos , Transdução de Sinais , Microambiente Tumoral
10.
Int J Mol Sci ; 21(6)2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32213831

RESUMO

BiodentineTM is a material based on hydrated calcium silicate with odontotropic properties. However, from the clinician's perspective, every material used to fill a tooth-even those showing the optimal biochemical parameters-is in fact a foreign body introduced to the organism of the host. Therefore, apart from the chemical parameters of such materials, equally important is the so-called biocompatibility of such materials. The aim of the study was to investigate whether BiodentineTM, used in the regeneration of the pulp-dentine complex, may affect the expression of the enzymes cyclooxygenase 1 (COX1) and cyclooxygenase 2 (COX2) in THP-1 monocytes/macrophages and the amount of prostanoids synthesized by these enzymes-precursors of biologically active prostanoids such as prostaglandin E2 (PGE2) and thromboxane (TXB2) which are mediators of inflammation. An original aspect of this research is the use of the THP-1 monocyte/macrophage cell model and the use of biomaterial in direct contact with cells. In this way we tried to reflect the clinical conditions of regenerative pulp and periodontal tissue treatment using BiodentineTM. The results of our study showed a lack of macrophage activation (measured by flow cytometry) and a lack of stimulation of the expression of the studied cyclooxygenase enzymes (measured by Western blotting and fluorescent microscopy), as well as a lack of increase in the concentration (measured by ELISA method) of their inflammatory mediators (PGE2 and TXB2) in vitro incubated with BiodentineTM.


Assuntos
Compostos de Cálcio/farmacologia , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Macrófagos/efeitos dos fármacos , Silicatos/farmacologia , Ciclo-Oxigenase 1/genética , Ciclo-Oxigenase 2/genética , Dinoprostona/metabolismo , Humanos , Ativação de Macrófagos , Macrófagos/metabolismo , Células THP-1 , Tromboxanos/metabolismo
11.
Antioxidants (Basel) ; 9(2)2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-32012936

RESUMO

Despite numerous studies concerning the pathophysiology of migraine, the exact molecular mechanism of disturbances underlying migraine is still unknown. Furthermore, oxidative stress is considered to play a significant role in migraine pathogenesis. The notion of oxidative stress in migraine patients has been discussed for several decades. Over the past few years, among the substances that could potentially be used for migraine treatment, particular attention has been paid to the so-called nutraceutics, including antioxidants. Antioxidants supplied with food prevent oxidative stress by inhibiting initiation, propagation, and the oxidative chain reaction itself. Additionally, the agents used so far in the prevention of migraine indeed show some anti-oxidative action. The antioxidants discussed in the present paper are increasingly more often used by migraine patients not only due to mild or even a lack of side effects but also because of their effectiveness (decreased frequency of migraine episodes or shortening of an episode duration). The present review provides a summary of the studies on nutraceuticals with antioxidative properties.

12.
Int J Mol Sci ; 21(3)2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32041252

RESUMO

Lead (Pb) is a heavy metal with a proven neurotoxic effect. Exposure is particularly dangerous to the developing brain in the pre- and neonatal periods. One postulated mechanism of its neurotoxicity is induction of inflammation. This study analyzed the effect of exposure of rat pups to Pb during periods of brain development on the concentrations of selected cytokines and prostanoids in the forebrain cortex, hippocampus and cerebellum. METHODS: Administration of 0.1% lead acetate (PbAc) in drinking water ad libitum, from the first day of gestation to postnatal day 21, resulted in blood Pb in rat pups reaching levels below the threshold considered safe for humans by the Centers for Disease Control and Prevention (10 µg/dL). Enzyme-linked immunosorbent assay (ELISA) method was used to determine the levels of interleukins IL-1ß, IL-6, transforming growth factor-ß (TGF-ß), prostaglandin E2 (PGE2) and thromboxane B2 (TXB2). Western blot and quantitative real-time PCR were used to determine the expression levels of cyclooxygenases COX-1 and COX-2. Finally, Western blot was used to determine the level of nuclear factor kappa B (NF-κB). RESULTS: In all studied brain structures (forebrain cortex, hippocampus and cerebellum), the administration of Pb caused a significant increase in all studied cytokines and prostanoids (IL-1ß, IL-6, TGF-ß, PGE2 and TXB2). The protein and mRNA expression of COX-1 and COX-2 increased in all studied brain structures, as did NF-κB expression. CONCLUSIONS: Chronic pre- and neonatal exposure to Pb induces neuroinflammation in the forebrain cortex, hippocampus and cerebellum of rat pups.


Assuntos
Cerebelo/imunologia , Encefalite/induzido quimicamente , Hipocampo/imunologia , Chumbo/toxicidade , Efeitos Tardios da Exposição Pré-Natal/imunologia , Prosencéfalo/imunologia , Animais , Animais Recém-Nascidos , Biomarcadores/metabolismo , Cerebelo/efeitos dos fármacos , Dinoprostona/metabolismo , Modelos Animais de Doenças , Encefalite/imunologia , Feminino , Hipocampo/efeitos dos fármacos , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Masculino , Gravidez , Prosencéfalo/efeitos dos fármacos , Ratos , Tromboxano B2/metabolismo , Fator de Crescimento Transformador beta/metabolismo
13.
Int J Mol Sci ; 22(1)2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396675

RESUMO

The aim of the present study was to investigate the new silicate cement mineral trioxide aggregate (MTA Repair HP) with respect to its effect on the inflammation process involving the tooth and periodontal tissues. The composition of MTA Repair HP was supplemented with plasticizer agents which can have a negative effect on the modulation of tooth inflammation. The silicate-based material in question is widely used in regeneration of the pulp-dentin complex, treatment of perforations of various locations in the tooth, as well as in surgical treatment of the complications of periapical tissue. The improved bioceramic restorative cement can affect the expression of metalloproteinases MMP-2 and MMP-9 in monocytes/macrophages involved in modulation of inflammation and regenerative processes of the tooth and periodontal tissues. The novel aspect of the present study lies in the application of the model of THP-1 monocyte/macrophage and applying the biomaterial in direct contact with the cells. Hence, it provides a representation of clinical conditions with respect to regenerative pulp and periodontal treatment with the use of MTA Repair HP. A lack of macrophage activation (as measured with flow cytometry) was found. Moreover, the study identified a lack of expression stimulation of the studied metalloproteinases (with the use of Western blotting and fluorescent microscopy). Similarly, no increase in MMP-2 and MMP-9 concentration was found (measured by ELISA method) in vitro when incubated with MTA Repair HP. Based on the results it can be concluded that new MTA Repair HP does not increase the inflammatory response in monocytes/macrophages associated with the activity of the described enzymes. It can also be speculated that they do not affect the process of dentin regeneration in which MMP-2 and MMP-9 play significant roles.


Assuntos
Compostos de Alumínio/farmacologia , Compostos de Cálcio/farmacologia , Macrófagos/efeitos dos fármacos , Metaloproteinase 2 da Matriz/biossíntese , Metaloproteinase 9 da Matriz/biossíntese , Óxidos/farmacologia , Cimento de Silicato/farmacologia , Silicatos/farmacologia , Western Blotting , Combinação de Medicamentos , Ensaio de Imunoadsorção Enzimática , Humanos , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Microscopia Confocal , Células THP-1
14.
Brain Res ; 1719: 49-56, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31121160

RESUMO

Morphine is one of the most potent analgesics used in medicine and it's long-term use is associated with the risk of the state of dependence. The cessation of chronic morphine administration leads to withdrawal signs which are associated with neurotransmitter dysregulations within mesolimbic system. Adenosine 5'-triphosphate (ATP) and purinergic system play an important role in the activity of central nervous system (CNS). Purinergic receptors are widely distributed in neurons and glial cells throughout the CNS taking part in integration of functional activity between neurons, glial and vascular cells. In the present study the mRNA and protein expression of purinergic P2X4 and P2X7 receptors in selected mesolimbic structures (striatum, hippocampus and prefrontal cortex) during morphine withdrawal in rats was investigated by RT-PCR and Western Blot analysis. Two experimental models of morphine withdrawal were studied: single and repeated morphine withdrawal. We demonstrated that expression of P2X4 and P2X7 receptors was altered during morphine withdrawal period in rats. These alterations were varied in particular mesolimbic areas depending on the scheme of morphine administration. Our results extend the current knowledge on morphine withdrawal and for the first time high-light interactions between purinergic system and morphine withdrawal. It seems, the purinergic system may be a new, valuable tool in searching for a new strategy of management of opioid dependence.


Assuntos
Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X7/genética , Síndrome de Abstinência a Substâncias/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Encéfalo/metabolismo , Corpo Estriado/metabolismo , Expressão Gênica/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Morfina/metabolismo , Dependência de Morfina/genética , Dependência de Morfina/fisiopatologia , Neuroglia/metabolismo , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , RNA Mensageiro , Ratos , Ratos Wistar , Receptores Purinérgicos P2X4/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Síndrome de Abstinência a Substâncias/genética
15.
J Trace Elem Med Biol ; 52: 222-231, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30732887

RESUMO

OBJECTIVE: As cardiovascular events are one of the main causes of death in developed countries, each factor potentially increasing the risk of cardiovascular disease deserves special attention. One such factor is the potentially atherogenic effect of lead (Pb) on lipid metabolism, and is significant in view of the still considerable Pb environmental pollution and the non-degradability of Pb compounds. METHODS: Analysis of saturated fatty acids (SFA) (caprylic acid (C8:0), decanoic acid (C10:0), lauric acid (C12:0), tridecanoic acid (C13:0), myristic acid (C14:0), pentadecanoic acid (C15:0), palmitic acid (C16:0), heptadecanoic acid (C17:0), stearic acid (C18:0), and behenic acid (C22:0)), monounsaturated fatty acid (MUFA) (palmitoleic acid (C16:1), oleic acid (18:1w9), trans-vaccenic acid (C18:1 trans11)), and polyunsaturated fatty acid (PUFA) (linoleic acid (C18:2n6), gamma-linolenic acid (C18:3n6), arachidonic acid (C20:4n6)), was conducted by gas chromatography. Analysis of stearoyl-CoA desaturase (SCD), fatty acid desaturase 1 (FADS1) and fatty acid desaturase 2 (FADS2) expression was performed using qRT-PCR. Oxidative stress intensity (malondialdehyde - MDA concentration) was measured using spectrophotometric method. Intracellular generation of reactive oxygen species (ROS) in macrophages was visualized by fluorescence microscopy and quantitatively measured by plate reader. RESULTS: Pb caused quantitative alterations in FAs profile in macrophages; the effect was Pb-concentration dependent and selective (i.e. concerned only selected FAs). In general, the effect of Pb was biphasic, with Pb levels of 1.25 µg/dL and 2.5 µg/dL being stimulatory, and 10 µg/dL being inhibitory on concentrations of selected FAs. The most potent Pb concentration, resulting in increase in levels of 9 FAs, was 2.5 µg/dL, the Pb-level corresponding to the mean blood Pb concentrations of people living in urban areas not contaminated by Pb. Pb was found to exert similar, biphasic effect on the expression of FADS1. However, Pb decreased, in a concentration-dependent manner, the expression of SCD and FADS2. Pb significantly increased MDA and ROS concentration in macrophages. CONCLUSION: Environmental Pb exposure might be a risk factor resulting in alterations in FAs levels, oxidative stress and increased MDA concentration in macrophages, which might lead to the formation of foam cells and to inflammatory reactions.


Assuntos
Ácidos Graxos/farmacologia , Chumbo/farmacologia , Macrófagos/efeitos dos fármacos , Células Cultivadas , Dessaturase de Ácido Graxo Delta-5 , Relação Dose-Resposta a Droga , Ácidos Graxos/sangue , Humanos , Chumbo/sangue , Macrófagos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
16.
Int J Mol Sci ; 19(6)2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29925772

RESUMO

The human immune system is constantly exposed to xenobiotics and pathogens from the environment. Although the mechanisms underlying their influence have already been at least partially recognized, the effects of some factors, such as lead (Pb), still need to be clarified. The results of many studies indicate that Pb has a negative effect on the immune system, and in our review, we summarize the most recent evidence that Pb can promote inflammatory response. We also discuss possible molecular and biochemical mechanisms of its proinflammatory action, including the influence of Pb on cytokine metabolism (interleukins IL-2, IL-4, IL-8, IL-1b, IL-6), interferon gamma (IFNγ), and tumor necrosis factor alpha (TNF-α); the activity and expression of enzymes involved in the inflammatory process (cyclooxygenases); and the effect on selected acute phase proteins: C-reactive protein (CRP), haptoglobin, and ceruloplasmin. We also discuss the influence of Pb on the immune system cells (T and B lymphocytes, macrophages, Langerhans cells) and the secretion of IgA, IgE, IgG, histamine, and endothelin.


Assuntos
Proteínas de Fase Aguda/metabolismo , Citocinas/metabolismo , Exposição Ambiental , Imunoglobulinas/metabolismo , Inflamação/induzido quimicamente , Inflamação/imunologia , Chumbo/toxicidade , Prostaglandina-Endoperóxido Sintases/metabolismo , Animais , Citocinas/genética , Humanos , Sistema Imunitário/efeitos dos fármacos , Linfócitos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Camundongos , Prostaglandina-Endoperóxido Sintases/genética , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA