Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Arch Toxicol ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834875

RESUMO

Aflatoxin B1 (AFB1) is a pro-carcinogenic compound bioactivated in the liver by cytochromes P450 (CYPs). In mammals, CYP1A and CYP3A are responsible for AFB1 metabolism, with the formation of the genotoxic carcinogens AFB1-8,9-epoxide and AFM1, and the detoxified metabolite AFQ1. Due to climate change, AFB1 cereals contamination arose in Europe. Thus, cattle, as other farm animals fed with grains (pig, sheep and broiler), are more likely exposed to AFB1 via feed with consequent release of AFM1 in milk, posing a great concern to human health. However, knowledge about bovine CYPs involved in AFB1 metabolism is still scanty. Therefore, CYP1A1- and CYP3A74-mediated molecular mechanisms of AFB1 hepatotoxicity were here dissected. Molecular docking of AFB1 into CYP1A1 model suggested AFB1 8,9-endo- and 8,9-exo-epoxide, and AFM1 formation, while docking of AFB1 into CYP3A74 pointed to AFB1 8,9-exo-epoxide and AFQ1 synthesis. To biologically confirm these predictions, CYP1A1 and CYP3A74 knockout (KO) BFH12 cell lines were exposed to AFB1. LC-MS/MS investigations showed the abolished production of AFM1 in CYP1A1 KO cells and the strong increase of parent AFB1 in CYP3A74 KO cells; the latter result, coupled to a decreased cytotoxicity, suggested the major role of CYP3A74 in AFB1 8,9-exo-epoxide formation. Finally, RNA-sequencing analysis indirectly proved lower AFB1-induced cytotoxic effects in engineered cells versus naïve ones. Overall, this study broadens the knowledge on AFB1 metabolism and hepatotoxicity in cattle, and it provides the weight of evidence that CYP1A1 and CYP3A74 inhibition might be exploited to reduce AFM1 and AFBO synthesis, AFB1 toxicity, and AFM1 milk excretion.

2.
Toxins (Basel) ; 15(9)2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37755981

RESUMO

Aflatoxin B1 (AFB1) induces lipid peroxidation and mortality in bovine foetal hepatocyte-derived cells (BFH12), with underlying transcriptional perturbations associated mainly with cancer, cellular damage, inflammation, bioactivation, and detoxification pathways. In this cell line, curcumin and resveratrol have proven to be effective in mitigating AFB1-induced toxicity. In this paper, we preliminarily assessed the potential anti-AFB1 activity of a natural polyphenol, quercetin (QUE), in BFH12 cells. To this end, we primarily measured QUE cytotoxicity using a WST-1 reagent. Then, we pre-treated the cells with QUE and exposed them to AFB1. The protective role of QUE was evaluated by measuring cytotoxicity, transcriptional changes (RNA-sequencing), lipid peroxidation (malondialdehyde production), and targeted post-transcriptional modifications (NQO1 and CYP3A enzymatic activity). The results demonstrated that QUE, like curcumin and resveratrol, reduced AFB1-induced cytotoxicity and lipid peroxidation and caused larger transcriptional variations than AFB1 alone. Most of the differentially expressed genes were involved in lipid homeostasis, inflammatory and immune processes, and carcinogenesis. As for enzymatic activities, QUE significantly reverted CYP3A variations induced by AFB1, but not those of NQO1. This study provides new knowledge about key molecular mechanisms involved in QUE-mediated protection against AFB1 toxicity and encourages in vivo studies to assess QUE's bioavailability and beneficial effects on aflatoxicosis.


Assuntos
Curcumina , Quercetina , Animais , Bovinos , Quercetina/farmacologia , Resveratrol/farmacologia , Aflatoxina B1/toxicidade , Citocromo P-450 CYP3A , Curcumina/farmacologia , Hepatócitos , Fígado
3.
Animals (Basel) ; 14(1)2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38200793

RESUMO

Several studies have shown the importance of vitamin D3 supplementation in small animals. In dogs, a low vitamin D3 status is associated not only with bone metabolism but also with different kinds of disorders, such as congestive heart failure, gastrointestinal diseases, chronic kidney diseases, and some types of cancer. However, it is crucial to maintain balance and monitor the introduction of this essential nutrient through the diet because over-supplementation can result in toxicity. Due to the clinical importance of assessing the vitamin D3 status in small animal patients, a quick, simple, and highly performing analytical method for its measurement is needed. In this study, we describe the development of a novel liquid chromatography-tandem mass spectrometry method for 25-hydroxyvitamin D3 quantification in canine serum. The approach was successfully validated following current European guidelines, proving excellent linearity (R2 always ≥0.996), accuracy (always within ±13%) and precision (always <10%). The application of the validated approach to samples collected from 40 healthy dogs made possible the definition of a reliable reference interval for 25-hydroxyvitamin D3, the main biomarker of vitamin D3. In addition, variations below 5% in the results obtained quantifying the same samples using a water-based calibration curve demonstrated that a surrogate matrix may be used without affecting data accuracy. Thanks to its simplicity, the proposed technique represents a useful tool for supporting clinical routine and investigating correlations between serum concentrations of this metabolite and multiple diseases. Additionally, it could enable the monitoring of supplementation in small animal patients in veterinary clinical practice.

4.
Toxins (Basel) ; 14(7)2022 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-35878173

RESUMO

Aflatoxin B1 (AFB1) is a major food safety concern, threatening the health of humans and animals. Bentonite (BEN) is an aluminosilicate clay used as a feed additive to reduce AFB1 presence in contaminated feedstuff. So far, few studies have characterized BEN toxicity and efficacy in vitro. In this study, cytotoxicity (WST-1 test), the effects on cell permeability (trans-epithelial electrical resistance and lucifer yellow dye incorporation), and transcriptional changes (RNA-seq) caused by BEN, AFB1 and their combination (AFB1 + BEN) were investigated in Caco-2 cells. Up to 0.1 mg/mL, BEN did not affect cell viability and permeability, but it reduced AFB1 cytotoxicity; however, at higher concentrations, BEN was cytotoxic. As to RNA-seq, 0.1 mg/mL BEN did not show effects on cell transcriptome, confirming that the interaction between BEN and AFB1 occurs in the medium. Data from AFB1 and AFB1 + BEN suggested AFB1 provoked most of the transcriptional changes, whereas BEN was preventive. The most interesting AFB1-targeted pathways for which BEN was effective were cell integrity, xenobiotic metabolism and transporters, basal metabolism, inflammation and immune response, p53 biological network, apoptosis and carcinogenesis. To our knowledge, this is the first study assessing the in vitro toxicity and whole-transcriptomic effects of BEN, alone or in the presence of AFB1.


Assuntos
Aflatoxina B1 , Bentonita , Aflatoxina B1/metabolismo , Ração Animal/análise , Animais , Bentonita/metabolismo , Bentonita/toxicidade , Células CACO-2 , Enterócitos/metabolismo , Humanos , Transcriptoma
5.
Toxins (Basel) ; 14(7)2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35878242

RESUMO

Aflatoxin B1 (AFB1) is a food contaminant metabolized mostly in the liver and leading to hepatic damage. Livestock species are differently susceptible to AFB1, but the underlying mechanisms of toxicity have not yet been fully investigated, especially in ruminants. Thus, the aim of the present study was to better characterize the molecular mechanism by which AFB1 exerts hepatotoxicity in cattle. The bovine fetal hepatocyte cell line (BFH12) was exposed for 48 h to three different AFB1 concentrations (0.9 µM, 1.8 µM and 3.6 µM). Whole-transcriptomic changes were measured by RNA-seq analysis, showing significant differences in the expression of genes mainly involved in inflammatory response, oxidative stress, drug metabolism, apoptosis and cancer. As a confirmatory step, post-translational investigations on genes of interest were implemented. Cell death associated with necrosis rather than apoptosis events was noted. As far as the toxicity mechanism is concerned, a molecular pathway linking inflammatory response and oxidative stress was postulated. Toll-Like Receptor 2 (TLR2) activation, consequent to AFB1 exposure, triggers an intracellular signaling cascade involving a kinase (p38ß MAPK), which in turn allows the nuclear translocation of the activator protein-1 (AP-1) and NF-κB, finally leading to the release of pro-inflammatory cytokines. Furthermore, a p38ß MAPK negative role in cytoprotective genes regulation was postulated. Overall, our investigations improved the actual knowledge on the molecular effects of this worldwide relevant natural toxin in cattle.


Assuntos
Aflatoxina B1 , Receptor 2 Toll-Like , Aflatoxina B1/metabolismo , Animais , Bovinos , Hepatócitos , Fígado , Estresse Oxidativo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA