Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
CNS Neurosci Ther ; 18(1): 41-6, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21199452

RESUMO

Clioquinol was produced as a topical antiseptic and marketed as an oral intestinal amebicide in 1934, being used to treat a wide range of intestinal diseases. In the early 1970s, it was withdrawn from the market as an oral agent because of its association with subacute myelo-optic neuropathy (SMON), a syndrome that involves sensory and motor disturbances in the lower limbs and visual changes. The first methods for determining plasma and tissue clioquinol (5-chloro-7-iodo-8-quinolinol) levels were set up in the 1970s and involved HPLC separation with UV detection, these were followed by a more sensitive GC method with electron capture detection and a gaschromatographic-massspectrometric (GC-MS) method. Finally, an HPLC method using electrochemical detection has proved to be as highly sensitive and specific as the GC-MS. In rats, mice, rabbits, and hamsters, clioquinol is rapidily absorbed and undergoes first-pass metabolization to glucuronate and sulfate conjugates; the concentrations of the metabolites are higher than those of free clioquinol. Bioavailabilty versus intraperitoneal dosing is about 12%. Dogs and monkeys form fewer conjugates. In man, single-dose concentrations are dose related, and the drug's half-life is 11-14 h. There is no accumulation, and the drug is much less metabolized to conjugates. Clioquinol acts as a zinc and copper chelator. Metal chelation is a potential therapeutic strategy for Alzheimer's disease (AD) because zinc and copper are involved in the deposition and stabilization of amyloid plaques, and chelating agents can dissolve amyloid deposits in vitro and in vivo. In general, the ability of clioquinol to chelate and redistribute metals plays an important role in diseases characterised by Zn, Cu, Fe dyshomeostasis, such as AD and Parkinson's disease, as it reduces oxidation and the amyloid burden. Zinc chelators may also act as anticancer agents. Animal toxicity studies have revealed species-specific differences in neurotoxic responses that are related to the serum levels of clioquinol and metabolites. This is also true in humans, who form fewer conjugates. The results of studies of Alzheimer patients are conflicting and need further confirmation. The potential therapeutic role of the two main effects of MPACs (the regulation of the distribution of metals and antioxidants) has not yet been fully explored.


Assuntos
Clioquinol/uso terapêutico , Doenças Neurodegenerativas/tratamento farmacológico , Animais , Ensaios Clínicos como Assunto , Clioquinol/farmacocinética , Modelos Animais de Doenças , Humanos
2.
Clin Pharmacokinet ; 46(5): 359-88, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17465637

RESUMO

In the past, the information about the dose-clinical effectiveness of typical antipsychotics was not complete and this led to the risk of extrapyramidal adverse effects. This, together with the intention of improving patients' quality of life and therapeutic compliance, resulted in the development of atypical or second-generation antipsychotics (SGAs). This review will concentrate on the pharmacokinetics and metabolism of clozapine, risperidone, olanzapine, quetiapine, amisulpride, ziprasidone, aripiprazole and sertindole, and will discuss the main aspects of their pharmacodynamics. In psychopharmacology, therapeutic drug monitoring studies have generally concentrated on controlling compliance and avoiding adverse effects by keeping long-term exposure to the minimal effective blood concentration. The rationale for using therapeutic drug monitoring in relation to SGAs is still a matter of debate, but there is growing evidence that it can improve efficacy, especially when patients do not respond to therapeutic doses or when they develop adverse effects. Here, we review the literature concerning the relationships between plasma concentrations of SGAs and clinical responses by dividing the studies on the basis of the length of their observation periods. Studies with clozapine evidenced a positive relationship between plasma concentrations and clinical response, with a threshold of 350-420 ng/mL associated with good clinical response. The usefulness of therapeutic drug monitoring is well established because high plasma concentrations of clozapine can increase the risk of epileptic seizures. Plasma clozapine concentrations seem to be influenced by many factors such as altered cytochrome P450 1A4 activity, age, sex and smoking. The pharmacological effects of risperidone depend on the sum of the plasma concentrations of risperidone and its 9-hydroxyrisperidone metabolite, so monitoring the plasma concentrations of the parent compound alone can lead to erroneous interpretations. Despite a large variability in plasma drug concentrations, the lack of studies using fixed dosages, and discrepancies in the results, it seems that monitoring the plasma concentrations of the active moiety may be useful. However, no therapeutic plasma concentration range for risperidone has yet been clearly established. A plasma threshold concentration for parkinsonian side effects has been found to be 74 ng/mL. Moreover, therapeutic drug monitoring may be particularly useful in the switch between the oral and the long-acting injectable form. The reviewed studies on olanzapine strongly indicate a relationship between clinical outcomes and plasma concentrations. Olanzapine therapeutic drug monitoring can be considered very useful in assessing therapeutic efficacy and controlling adverse events. A therapeutic range of 20-50 ng/mL has been found. There is little evidence in favour of the existence of a relationship between plasma quetiapine concentrations and clinical responses, and an optimal therapeutic range has not been identified. Positron emission tomography studies of receptor blockade indicated a discrepancy between the time course of receptor occupancy and plasma quetiapine concentrations. The value of quetiapine plasma concentration monitoring in clinical practice is still controversial. Preliminary data suggested that a therapeutic plasma amisulpride concentration of 367 ng/mL was associated with clinical improvement. A therapeutic range of 100-400 ng/mL is proposed from non-systematic clinical experience. There is no direct evidence concerning optimal plasma concentration ranges of ziprasidone, aripiprazole or sertindole.


Assuntos
Antipsicóticos/farmacocinética , Antipsicóticos/uso terapêutico , Transtornos Mentais/tratamento farmacológico , Fatores Etários , Antipsicóticos/sangue , Relação Dose-Resposta a Droga , Interações Medicamentosas , Monitoramento de Medicamentos , Humanos , Fatores Sexuais , Fumar , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA