Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Mol Psychiatry ; 28(10): 4463-4473, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37452088

RESUMO

While our understanding of the molecular biology of Alzheimer's disease (AD) has grown, the etiology of the disease, especially the involvement of peripheral infection, remains a challenge. In this study, we hypothesize that peripheral infection represents a risk factor for AD pathology. To test our hypothesis, APP/PS1 mice underwent cecal ligation and puncture (CLP) surgery to develop a polymicrobial infection or non-CLP surgery. Mice were euthanized at 3, 30, and 120 days after surgery to evaluate the inflammatory mediators, glial cell markers, amyloid burden, gut microbiome, gut morphology, and short-chain fatty acids (SCFAs) levels. The novel object recognition (NOR) task was performed 30 and 120 days after the surgery, and sepsis accelerated the cognitive decline in APP/PS1 mice at both time points. At 120 days, the insoluble Aß increased in the sepsis group, and sepsis modulated the cytokines/chemokines, decreasing the cytokines associated with brain homeostasis IL-10 and IL-13 and increasing the eotaxin known to influence cognitive function. At 120 days, we found an increased density of IBA-1-positive microglia in the vicinity of Aß dense-core plaques, compared with the control group confirming the predictable clustering of reactive glia around dense-core plaques within 15 µm near Aß deposits in the brain. In the gut, sepsis negatively modulated the α- and ß-diversity indices evaluated by 16S rRNA sequencing, decreased the levels of SCFAs, and significantly affected ileum and colon morphology in CLP mice. Our data suggest that sepsis-induced peripheral infection accelerates cognitive decline and AD pathology in the AD mouse model.


Assuntos
Doença de Alzheimer , Microbioma Gastrointestinal , Sepse , Camundongos , Animais , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Doenças Neuroinflamatórias , RNA Ribossômico 16S , Camundongos Transgênicos , Amiloide , Citocinas , Placa Amiloide , Sepse/complicações , Peptídeos beta-Amiloides , Modelos Animais de Doenças
2.
J Neuroinflammation ; 19(1): 268, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333747

RESUMO

The pathophysiology of sepsis may involve the activation of the NOD-type receptor containing the pyrin-3 domain (NLPR-3), mitochondrial and oxidative damages. One of the primary essential oxidation products is 8-oxoguanine (8-oxoG), and its accumulation in mitochondrial DNA (mtDNA) induces cell dysfunction and death, leading to the hypothesis that mtDNA integrity is crucial for maintaining neuronal function during sepsis. In sepsis, the modulation of NLRP-3 activation is critical, and mefenamic acid (MFA) is a potent drug that can reduce inflammasome activity, attenuating the acute cerebral inflammatory process. Thus, this study aimed to evaluate the administration of MFA and its implications for the reduction of inflammatory parameters and mitochondrial damage in animals submitted to polymicrobial sepsis. To test our hypothesis, adult male Wistar rats were submitted to the cecal ligation and perforation (CLP) model for sepsis induction and after receiving an injection of MFA (doses of 10, 30, and 50 mg/kg) or sterile saline (1 mL/kg). At 24 h after sepsis induction, the frontal cortex and hippocampus were dissected to analyze the levels of TNF-α, IL-1ß, and IL-18; oxidative damage (thiobarbituric acid reactive substances (TBARS), carbonyl, and DCF-DA (oxidative parameters); protein expression (mitochondrial transcription factor A (TFAM), NLRP-3, 8-oxoG; Bax, Bcl-2 and (ionized calcium-binding adaptor molecule 1 (IBA-1)); and the activity of mitochondrial respiratory chain complexes. It was observed that the septic group in both structures studied showed an increase in proinflammatory cytokines mediated by increased activity in NLRP-3, with more significant oxidative damage and higher production of reactive oxygen species (ROS) by mitochondria. Damage to mtDNA it was also observed with an increase in 8-oxoG levels and lower levels of TFAM and NGF-1. In addition, this group had an increase in pro-apoptotic proteins and IBA-1 positive cells. However, MFA at doses of 30 and 50 mg/kg decreased inflammasome activity, reduced levels of cytokines and oxidative damage, increased bioenergetic efficacy and reduced production of ROS and 8-oxoG, and increased levels of TFAM, NGF-1, Bcl-2, reducing microglial activation. As a result, it is suggested that MFA induces protection in the central nervous system early after the onset of sepsis.


Assuntos
Ácido Mefenâmico , Sepse , Animais , Ratos , Masculino , Espécies Reativas de Oxigênio/metabolismo , Ácido Mefenâmico/metabolismo , Ácido Mefenâmico/farmacologia , Ratos Wistar , Inflamassomos/metabolismo , Fator de Crescimento Neural/metabolismo , Mitocôndrias , Sepse/complicações , Sepse/tratamento farmacológico , DNA Mitocondrial , Citocinas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
3.
Inflammation ; 45(6): 2352-2367, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35689164

RESUMO

Sepsis is a life-threatening organ dysfunction, which demands notable attention for its treatment, especially in view of the involvement of immunodepressed patients, as the case of patients with diabetes mellitus (DM), who constitute a population susceptible to develop infections. Thus, considering this endocrine pathology as an implicatory role on the immune system, the aim of this study was to show the relationship between this disease and sepsis on neuroinflammatory and neurochemical parameters. Levels of IL-6, IL-10, brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), and mitochondrial respiratory chain complexes were evaluated in the hippocampus and prefrontal cortex 24 h after sepsis by cecal ligation and perforation (CLP) in Wistar rats induced to type 1 diabetes by alloxan (150 mg/kg). It was verified that diabetes implied immune function after 24 h of sepsis, since it contributed to the increase of the inflammatory process with higher production of IL-6 and decreased levels of IL-10 only in the hippocampus. In the same brain area, a several decrease in NGF level and activity of complexes I and II of the mitochondrial respiratory chain were observed. Thus, diabetes exacerbates neuroinflammation and results in mitochondrial impairment and downregulation of NGF level in the hippocampus after sepsis.


Assuntos
Diabetes Mellitus , Sepse , Animais , Ratos , Ratos Wistar , Fator de Crescimento Neural/metabolismo , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Doenças Neuroinflamatórias , Encéfalo/metabolismo , Sepse/metabolismo , Mitocôndrias/metabolismo , Modelos Animais de Doenças
5.
J Neuroinflammation ; 19(1): 114, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35606817

RESUMO

BACKGROUND: Sepsis is a potentially fatal disease characterized by acute organ failure that affects more than 30 million people worldwide. Inflammation is strongly associated with sepsis, and patients can experience impairments in memory, concentration, verbal fluency, and executive functioning after being discharged from the hospital. We hypothesize that sepsis disrupts the microbiota-gut-brain axis homeostasis triggering cognitive impairment. This immune activation persists during treatment, causing neurological dysfunction in sepsis survivors. METHODS: To test our hypothesis, adult Wistar rats were subjected to cecal-ligation and perforation (CLP) or sham (non-CLP) surgeries. The animals were subjected to the [11C]PBR28 positron emission tomography (PET)/computed tomography (CT) imaging at 24 h and 10 days after CLP and non-CLP surgeries. At 24 h and 10 days after surgery, we evaluated the gut microbiome, bacterial metabolites, cytokines, microglia, and astrocyte markers. Ten days after sepsis induction, the animals were subjected to the novel object recognition (NOR) and the Morris water maze (MWM) test to assess their learning and memory. RESULTS: Compared to the control group, the 24-h and 10-day CLP groups showed increased [11C]PBR28 uptake, glial cells count, and cytokine levels in the brain. Results show that sepsis modulates the gut villus length and crypt depth, alpha and beta microbial diversities, and fecal short-chain fatty acids (SCFAs). In addition, sepsis surviving animals showed a significant cognitive decline compared with the control group. CONCLUSIONS: Since several pharmacological studies have failed to prevent cognitive impairment in sepsis survivors, a better understanding of the function of glial cells and gut microbiota can provide new avenues for treating sepsis patients.


Assuntos
Eixo Encéfalo-Intestino , Disfunção Cognitiva , Sepse , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Citocinas/metabolismo , Microbioma Gastrointestinal , Humanos , Ratos , Ratos Wistar , Sepse/complicações , Sepse/tratamento farmacológico
6.
Microvasc Res ; 137: 104193, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34062190

RESUMO

Sepsis is a complication of an infection which imbalance the normal regulation of several organ systems, including the central nervous system (CNS). Evidence points towards inflammation and oxidative stress as major steps associated with brain dysfunction in sepsis. Thus, we investigated the folic acid (FA) effect as an important antioxidant compound on acute brain dysfunction in rats and long term cognitive impairment and survival. Wistar rats were subjected to sepsis by cecal ligation and perforation (CLP) or sham (control) and treated orally with FA (10 mg/kg after CLP) or vehicle (veh). Animals were divided into sham + veh, sham + FA, CLP + veh and CLP + FA groups. Twenty-four hours after surgery, the hippocampus and prefrontal cortex were obtained and assayed for levels of blood brain barrier (BBB) permeability, nitrite/nitrate concentration, myeloperoxidase (MPO) activity, thiobarbituric acid reactive species (TBARS) formation and protein carbonyls. Survival was performed during 10 days after surgery and memory was evaluated. FA reduced BBB permeability, MPO activity in hippocampus and pre frontal cortex in 24 h and lipid peroxidation in hippocampus and improves the survival rate after sepsis. Long term cognitive improvement was verified with FA in septic rats compared with CLP + veh. Our data demonstrates that FA reduces the memory impairment in 10 days after sepsis and mortality in part by decreasing BBB permeability and oxidative stress parameters in the brain.


Assuntos
Antioxidantes/farmacologia , Comportamento Animal/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Permeabilidade Capilar/efeitos dos fármacos , Cognição/efeitos dos fármacos , Disfunção Cognitiva/prevenção & controle , Ácido Fólico/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Sepse/tratamento farmacológico , Animais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/fisiopatologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/psicologia , Modelos Animais de Doenças , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Carbonilação Proteica/efeitos dos fármacos , Ratos Wistar , Sepse/metabolismo , Sepse/fisiopatologia , Sepse/psicologia
7.
Braz. J. Psychiatry (São Paulo, 1999, Impr.) ; 43(3): 293-305, May-June 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1249178

RESUMO

The microbiota-gut-brain axis is a bidirectional signaling mechanism between the gastrointestinal tract and the central nervous system. The complexity of the intestinal ecosystem is extraordinary; it comprises more than 100 trillion microbial cells that inhabit the small and large intestine, and this interaction between microbiota and intestinal epithelium can cause physiological changes in the brain and influence mood and behavior. Currently, there has been an emphasis on how such interactions affect mental health. Evidence indicates that intestinal microbiota are involved in neurological and psychiatric disorders. This review covers evidence for the influence of gut microbiota on the brain and behavior in Alzheimer disease, dementia, anxiety, autism spectrum disorder, bipolar disorder, major depressive disorder, Parkinson's disease, and schizophrenia. The primary focus is on the pathways involved in intestinal metabolites of microbial origin, including short-chain fatty acids, tryptophan metabolites, and bacterial components that can activate the host's immune system. We also list clinical evidence regarding prebiotics, probiotics, and fecal microbiota transplantation as adjuvant therapies for neuropsychiatric disorders.


Assuntos
Humanos , Transtorno Depressivo Maior , Transtorno do Espectro Autista , Microbioma Gastrointestinal , Encéfalo , Ecossistema
8.
Mol Neurobiol ; 58(6): 2724-2733, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33495933

RESUMO

Sepsis is an organ dysfunction caused by a host's unregulated response to infection, causing long-term brain dysfunction with microglial activation, the release of inflammatory components, and mitochondrial changes. Neuroinflammation can increase the expression of the 18-kD translocator protein (TSPO) in the mitochondria, leading to the activation of the microglia and the release of inflammatory components. The antagonist PK-11195 can modulate TSPO and reduce microglial activation and cognitive damage presented in an animal model of sepsis. The aim of this was to evaluate the effects of PK-11195 on long-term brain inflammation and cognitive impairment in an animal model of sepsis. Wistar rats, 60 days old, were submitted to cecal ligation and puncture (CLP) surgery, divided into groups control/saline, control/PK-11195, sepsis/saline, and sepsis/PK-11195. Immediately after surgery, the antagonist PK-11195 was administered at a dose of 3 mg/kg. Ten days after CLP surgery, the animals were submitted to behavioral tests and determination of brain inflammatory parameters. The sepsis/saline group presented cognitive damage. However, there was damage prevention in animals that received PK-11195. Besides, the sepsis increased the levels of cytokines and M1 microglia markers and caused oxidative damage. However, PK-11195 had the potential to decrease inflammation. These events show that the modulation of neuroinflammation during sepsis by PK-11195, possibly related to changes in TSPO, improves mitochondrial function in the animals' brains. In conclusion, the antagonist PK-11195 attenuated brain inflammation and prevented cognitive impairment in animals subjected to sepsis.


Assuntos
Disfunção Cognitiva/tratamento farmacológico , Isoquinolinas/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Sepse/tratamento farmacológico , Sepse/microbiologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Citocinas/metabolismo , Isoquinolinas/farmacologia , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar
9.
Neurotherapeutics ; 18(1): 640-653, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32886341

RESUMO

Pneumococcal meningitis is a life-threatening infection of the central nervous system (CNS), and half of the survivors of meningitis suffer from neurological sequelae. We hypothesized that pneumococcal meningitis causes CNS inflammation via the disruption of the blood-brain barrier (BBB) and by increasing the receptor for advanced glycation end product (RAGE) expression in the brain, which causes glial cell activation, leading to cognitive impairment. To test our hypothesis, 60-day-old Wistar rats were subjected to meningitis by receiving an intracisternal injection of Streptococcus pneumoniae or artificial cerebrospinal fluid as a control group and were treated with a RAGE-specific inhibitor (FPS-ZM1) in saline. The rats also received ceftriaxone 100 mg/kg intraperitoneally, bid, and fluid replacements. Experimental pneumococcal meningitis triggered BBB disruption after meningitis induction, and FPS-ZM1 treatment significantly suppressed BBB disruption. Ten days after meningitis induction, surviving animals were free from infection, but they presented increased levels of TNF-α and IL-1ß in the prefrontal cortex (PFC); high expression levels of RAGE, amyloid-ß (Aß1-42), and microglial cell activation in the PFC and hippocampus; and memory impairment, as evaluated by the open-field, novel object recognition task and Morris water maze behavioral tasks. Targeted RAGE inhibition was able to reduce cytokine levels, decrease the expression of RAGE and Aß1-42, inhibit microglial cell activation, and improve cognitive deficits in meningitis survivor rats. The sequence of events generated by pneumococcal meningitis can persist long after recovery, triggering neurocognitive decline; however, RAGE blocker attenuated the development of brain inflammation and cognitive impairment in experimental meningitis.


Assuntos
Disfunção Cognitiva/etiologia , Meningite Pneumocócica/complicações , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Animais , Benzamidas/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Western Blotting , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Modelos Animais de Doenças , Interleucina-1beta/metabolismo , Masculino , Meningite Pneumocócica/tratamento farmacológico , Teste do Labirinto Aquático de Morris/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Teste de Campo Aberto/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Wistar , Receptor para Produtos Finais de Glicação Avançada/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo
10.
Mol Neurobiol ; 57(12): 5247-5262, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32870491

RESUMO

Sepsis survivors present acute and long-term cognitive impairment and the pathophysiology of neurological dysfunction in sepsis involves microglial activation. Recently, the involvement of cytosolic receptors capable of forming protein complexes called inflammasomes have been demonstrated to perpetuate neuroinflammation. Thus, we investigated the involvement of the NLRP3 inflammasome activation on early and late brain changes in experimental sepsis. Two-month-old male Wistar rats were submitted to the sepsis model by cecal ligation and perforation (CLP group) or laparotomy only (sham group). Immediately after surgery, the animals received saline or NLRP3 inflammasome formation inhibitor (MCC950, 140 ng/kg) intracerebroventricularly. Prefrontal cortex and hippocampus were isolated for cytokine analysis, microglial and astrocyte activation, oxidative stress measurements, nitric oxide formation, and mitochondrial respiratory chain activity at 24 h after CLP. A subset of animals was followed for 10 days for survival assessment, and then behavioral tests were performed. The administration of MCC950 restored the elevation of IL-1ß, TNF-α, IL-6, and IL-10 cytokine levels in the hippocampus. NLRP3 receptor levels increased in the prefrontal cortex and hippocampus at 24 h after sepsis, associated with microglial, but not astrocyte, activation. MCC950 reduced oxidative damage to lipids and proteins as well as preserved the activity of the enzyme SOD in the hippocampus. Mitochondrial respiratory chain activity presented variations in both structures studied. MCC950 reduced microglial activation, decreased acute neurochemical and behavioral alteration, and increased survival after experimental sepsis.


Assuntos
Encéfalo/patologia , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Sepse/complicações , Doença Aguda , Animais , Astrócitos/metabolismo , Encéfalo/metabolismo , Catalase/metabolismo , Citocinas/metabolismo , Transporte de Elétrons , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/metabolismo , Mediadores da Inflamação/metabolismo , Estimativa de Kaplan-Meier , Peroxidação de Lipídeos , Masculino , Memória , Transtornos da Memória/fisiopatologia , Microglia/metabolismo , Mitocôndrias/metabolismo , Nitratos/metabolismo , Nitritos/metabolismo , Estresse Oxidativo , Córtex Pré-Frontal/metabolismo , Carbonilação Proteica , Ratos Wistar , Superóxido Dismutase/metabolismo , Análise de Sobrevida
11.
Mol Neurobiol ; 57(11): 4451-4466, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32743736

RESUMO

Sepsis causes organ dysfunction due to an infection, and it may impact the central nervous system. Neuroinflammation and oxidative stress are related to brain dysfunction after sepsis. Both processes affect microglia activation, neurotrophin production, and long-term cognition. Fish oil (FO) is an anti-inflammatory compound, and lipoic acid (LA) is a universal antioxidant substance. They exert neuroprotective roles when administered alone. We aimed at determining the effect of FO+LA combination on microglia activation and brain dysfunction after sepsis. Microglia cells from neonatal pups were co-treated with lipopolysaccharide (LPS) and FO or LA, alone or combined, for 24 h. Cytokine levels were measured. Wistar rats were subjected to sepsis by cecal ligation and perforation (CLP) and treated orally with FO, LA, or FO+LA. At 24 h after surgery, the hippocampus, prefrontal cortex, and total cortex were obtained and assayed for levels of cytokines, myeloperoxidase (MPO) activity, protein carbonyls, superoxide dismutase (SOD), and catalase (CAT) activity. At 10 days after surgery, brain-derived neurotrophic factor (BDNF) levels were determined and behavioral tests were performed. The combination diminished in vitro levels of pro-inflammatory cytokines. The combination reduced TNF-α in the cortex, IL-1ß in the prefrontal cortex, as well as MPO activity, and decreased protein carbonyls formation in all structures. The combination enhanced catalase activity in the prefrontal cortex and hippocampus, elevated BDNF levels in all structures, and prevented behavioral impairment. In summary, the combination was effective in preventing cognitive damage by reducing neuroinflammation and oxidative stress and increasing BDNF levels.


Assuntos
Encéfalo/patologia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/prevenção & controle , Óleos de Peixe/farmacologia , Inflamação/patologia , Estresse Oxidativo/efeitos dos fármacos , Sepse/complicações , Ácido Tióctico/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Catalase/metabolismo , Células Cultivadas , Citocinas/metabolismo , Feminino , Inflamação/complicações , Estimativa de Kaplan-Meier , Transtornos da Memória/complicações , Microglia/efeitos dos fármacos , Microglia/metabolismo , Teste de Campo Aberto , Peroxidase/metabolismo , Carbonilação Proteica/efeitos dos fármacos , Ratos Wistar , Superóxido Dismutase/metabolismo
12.
Clin Sci (Lond) ; 134(7): 765-776, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32219335

RESUMO

BACKGROUND: In order to modulate microglial phenotypes in vivo, M1 microglia were depleted by administration of gadolinium chloride and the expression of M2 microglia was induced by IL-4 administration in an animal model of sepsis to better characterize the role of microglial phenotypes in sepsis-induced brain dysfunction. METHODS: Wistar rats were submitted to sham or cecal ligation and perforation (CLP) and treated with IL-4 or GdCl3. Animals were submitted to behavioral tests 10 days after surgery. In a separated cohort of animals at 24 h, 3 and 10 days after surgery, hippocampus was removed and cytokine levels, M1/M2 markers and CKIP-1 levels were determined. RESULTS: Modulation of microglia by IL-4 and GdCl3 was associated with an improvement in long-term cognitive impairment. When treated with IL-4 and GdCl3, the reduction of pro-inflammatory cytokines was apparent in almost all analyzed time points. Additionally, CD11b and iNOS were increased after CLP at all time points, and both IL-4 and GdCl3 treatments were able to reverse this. There was a significant decrease in CD11b gene expression in the CLP+GdCl3 group. IL-4 treatment was able to decrease iNOS expression after sepsis. Furthermore, there was an increase of CKIP-1 in the hippocampus of GdCl3 and IL-4 treated animals 10 days after CLP induction. CONCLUSIONS: GdCl3 and IL-4 are able to manipulate microglial phenotype in an animal models of sepsis, by increasing the polarization toward an M2 phenotype IL-4 and GdCl3 treatment was associated with decreased brain inflammation and functional recovery.


Assuntos
Anti-Inflamatórios/farmacologia , Comportamento Animal/efeitos dos fármacos , Cognição/efeitos dos fármacos , Disfunção Cognitiva/prevenção & controle , Encefalite/prevenção & controle , Gadolínio/farmacologia , Hipocampo/efeitos dos fármacos , Interleucina-4/farmacologia , Microglia/efeitos dos fármacos , Sepse/tratamento farmacológico , Animais , Antígeno CD11b/metabolismo , Proteínas de Transporte/metabolismo , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Disfunção Cognitiva/psicologia , Citocinas/metabolismo , Modelos Animais de Doenças , Encefalite/metabolismo , Encefalite/patologia , Encefalite/fisiopatologia , Hipocampo/metabolismo , Hipocampo/patologia , Hipocampo/fisiopatologia , Mediadores da Inflamação/metabolismo , Microglia/metabolismo , Microglia/patologia , Óxido Nítrico Sintase Tipo II/metabolismo , Fenótipo , Ratos Wistar , Sepse/metabolismo , Sepse/patologia , Sepse/fisiopatologia , Fatores de Tempo
13.
Inflammation ; 43(3): 1019-1034, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31981061

RESUMO

The use of reliable scores is a constant development in critical illness. According to Sepsis-3 consensus, the use of Sequential Organ Failure Assessment (SOFA) score of 2 or more is associated with a higher mortality of sepsis patients. In experimental research, due murine animal model limitations, the use of a score systems can be an alternative to assess sepsis severity. In this work, we suggest a sickness behavior score (SBS) that uses physiological variables to assess sepsis severity and mortality. Animals were evaluated daily by the presence of six indicators of sickness behavior: temperature alteration, preference of water/sucrose, liquid intake, food intake, body weight, and movimentation. Male adult Wistar rats were evaluated daily after sepsis induction by cecal ligation and puncture (CLP) or laparotomy only (sham) for determination of SBS. Oxidative stress, IL-6, and HPA axis markers (corticosterone and adrenal gland weight) were evaluated 24 h after CLP to determine the correlation with the acute SBS and neuroinflammation. Also, BDNF and four cognitive behavioral tests were correlated with the chronic SBS, i.e., sum of 8 days after surgery. In result, septic rats presented higher SBS than sham animals. Sepsis severity markers were associated with acute and chronic SBS. Also, SBS was negative correlated with the cognitive tests. In conclusion, SBS shows to be reliable score to predict sepsis severity and mortality. The use of score system provides the analysis of global sickness behavior, beyond evaluation of each parameter individually.


Assuntos
Coinfecção/metabolismo , Modelos Animais de Doenças , Comportamento de Doença/fisiologia , Mediadores da Inflamação/metabolismo , Locomoção/fisiologia , Sepse/metabolismo , Animais , Coinfecção/psicologia , Ingestão de Alimentos/fisiologia , Ingestão de Alimentos/psicologia , Inflamação/metabolismo , Inflamação/psicologia , Masculino , Estresse Oxidativo/fisiologia , Ratos , Ratos Wistar , Sepse/psicologia
14.
Nutrition ; 70: 110417, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-30867119

RESUMO

OBJECTIVES: Sepsis is a severe organic dysfunction caused by an infection that affects the normal regulation of several organ systems, including the central nervous system. Inflammation and oxidative stress play crucial roles in the development of brain dysfunction in sepsis. The aim of this study was to determine the effect of a fish oil (FO)-55-enriched lipid emulsion as an important anti-inflammatory compound on brain dysfunction in septic rats. METHODS: Wistar rats were subjected to sepsis by cecal ligation and perforation (CLP) or sham (control) and treated orally with FO (600 µL/kg after CLP) or vehicle (saline; sal). Animals were divided into sham+sal, sham+FO, CLP+sal and CLP+FO groups. At 24 h and 10 d after surgery, the hippocampus, prefrontal cortex, and total cortex were obtained and assayed for levels of interleukin (IL)-1ß and IL-10, blood-brain barrier permeability, nitrite/nitrate concentration, myeloperoxidase activity, thiobarbituric acid reactive species formation, protein carbonyls, superoxide dismutase and catalase activity, and brain-derived neurotrophic factor levels. Behavioral tasks were performed 10 d after surgery. RESULTS: FO reduced BBB permeability in the prefrontal cortex and total cortex of septic rats, decreased IL-1ß levels and protein carbonylation in all brain structures, and diminished myeloperoxidase activity in the hippocampus and prefrontal cortex. FO enhanced brain-derived neurotrophic factor levels in the hippocampus and prefrontal cortex and prevented cognitive impairment. CONCLUSIONS: FO diminishes the negative effect of polymicrobial sepsis in the rat brain by reducing inflammatory and oxidative stress markers.


Assuntos
Anti-Inflamatórios/farmacologia , Disfunção Cognitiva/prevenção & controle , Óleos de Peixe/farmacocinética , Estresse Oxidativo/efeitos dos fármacos , Sepse/psicologia , Animais , Biomarcadores/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Doenças do Ceco/complicações , Doenças do Ceco/microbiologia , Ceco/irrigação sanguínea , Ceco/microbiologia , Disfunção Cognitiva/microbiologia , Modelos Animais de Doenças , Emulsões , Lobo Frontal/efeitos dos fármacos , Interleucina-1beta/metabolismo , Perfuração Intestinal/complicações , Perfuração Intestinal/microbiologia , Ligadura/efeitos adversos , Masculino , Permeabilidade , Carbonilação Proteica/efeitos dos fármacos , Ratos , Ratos Wistar , Sepse/etiologia , Sepse/microbiologia
15.
Curr Top Behav Neurosci ; 44: 161-205, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30828767

RESUMO

Clinical and pre-clinical studies have demonstrated an important role of neuroinflammation in the etiology of schizophrenia. While the underlying mechanisms remain poorly understood, there are some studies demonstrating an association between maternal immune activation and behavioral changes in adult offspring and identifying early life infection as a trigger for schizophrenia; in addition, inflammatory markers were found to be increased in the schizophrenic post-mortem brain. During maternal immune activation, pro-inflammatory mediators such as cytokines, chemokines, antibodies, and acute-phase proteins are released in the maternal bloodstream, thus increasing the permeability of the placental barrier and the fetal blood-brain barrier, allowing the inflammatory mediators to enter the fetal brain. In the central nervous system (CNS), these pro-inflammatory mediators are able to activate microglial cells that can release pro-inflammatory cytokines such as tumor necrosis factor alpha (TNF-α), interleukin (IL)-1ß, and IL-6. As a consequence, circulating immune cells may infiltrate the brain, increasing cytokine levels and releasing antibodies that aggravate the neuroinflammation. Neuroinflammation may affect processes that are pivotal for normal brain maturation such as myelination, synaptic pruning, and neuronal remodeling. Microglial cell activation and pro-inflammatory mediators have been extensively studied in schizophrenic post-mortem brain samples. Some results of these investigations demonstrated an increase in microglial activation markers, cytokines, and chemokines in post-mortem brain samples from individuals with schizophrenia. In contrast, there are studies that have demonstrated low levels of microglial activation makers in the schizophrenic post-mortem brain. Thus, based on the important role of neuroinflammation as a trigger in the development of schizophrenia, this chapter aims (1) to enumerate evidence of neuroinflammation and microglial activation from pre-clinical schizophrenia models, (2) to show links between schizophrenia and neuroinflammation in clinical studies, and (3) to identify mechanisms by which microglial activation may influence in the development of schizophrenia.


Assuntos
Microglia , Transtornos Psicóticos , Esquizofrenia , Encéfalo/imunologia , Encéfalo/patologia , Citocinas , Feminino , Humanos , Microglia/imunologia , Gravidez , Transtornos Psicóticos/imunologia , Transtornos Psicóticos/patologia , Esquizofrenia/imunologia , Esquizofrenia/patologia
16.
J Drug Target ; 28(4): 428-436, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31594390

RESUMO

Herein, we report the effect of gold nanoparticles (AuNP) and n-acetylcysteine (NAC) isolated or in association as important anti-inflammatory and antioxidant compounds on brain dysfunction in septic rats. Male Wistar rats after sham operation or caecal ligation and perforation (CLP) were treated with subcutaneously injection of AuNP (50 mg/kg) and/or NAC (20 mg/kg) or saline immediately and 12 h after surgery. Twenty-four hours after CLP, hippocampus and prefrontal cortex were obtained and assayed for myeloperoxidase (MPO) activity, cytokines, lipid peroxidation, protein carbonyls formation, mitochondrial respiratory chain, and CK activity. AuNP + NAC association decreased MPO activity and pro-inflammatory cytokines production, being more effective than NAC or AuNP isolated treatment. AuNP + NAC association and NAC isolated treatment decreased oxidative stress to lipids in both brain structures, while protein oxidation decreased only in the hippocampus of AuNP + NAC association-treated animals. Complex I activity was increased with AuNP + NAC association and NAC isolated in the hippocampus. Regarding CK activity, AuNP and AuNP + NAC association increased this marker in both brain structures after CLP. Our data provide the first experimental demonstration that AuNP and NAC association was able to reduce sepsis-induced brain dysfunction in rats by decreasing neuroinflammation, oxidative stress parameters, mitochondrial dysfunction and CK activity.


Assuntos
Acetilcisteína/metabolismo , Ouro/farmacologia , Nanopartículas Metálicas/administração & dosagem , Sepse/tratamento farmacológico , Animais , Antioxidantes/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Peroxidase/metabolismo , Ratos , Ratos Wistar , Sepse/metabolismo
18.
J Psychiatr Res ; 115: 13-20, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31082652

RESUMO

A relationship between neuroinflammation and the development of psychiatric disorder have been revealed by many studies in the past decade. Although studies have shown that stressors can induce long-term changes that may be related to behavioral responses, these alterations have been poorly studied soon after a stressor, such as maternal deprivation (MD). Thus, this study was designed to investigate the acute effect of experimental induction of MD on inflammatory and microglial activation markers in the brain of infant rats. Early MD was induced from postnatal day (PND) 1-10. On PND 10 the prefrontal cortex (PFC) and hippocampus from MD and control groups were removed to investigate microglial activation and neuroinflammatory markers. In the PFC the expressions of cluster of differentiation molecule 11B (CD11B), toll-like receptor (TLR)-2, and TLR-4 were increased in rats subjected to MD. The arginase expression was elevated in the PFC and hippocampus of maternally deprived rats. The cytokines interleukin-5 (IL-5), -6, -7, -10, tumor necrosis factor (TNF-α), and interferon gamma (INF-γ) were increased in the PFC of MD rats group. In the PFC the macrophage inflammatory proteins (MIP)-1α levels were reduced in MD rats group. In the hippocampus only the levels of TNF-α and INF-γ were elevated in infant rats subjected to MD. In conclusion, our results support the hypothesis that neuroinflammation and microglial activation, mainly in the PFC, could be involved with changes in the brain resident cells following MD, and these alterations could be associated to the development of psychiatric conditions late in life.


Assuntos
Hipocampo , Inflamação , Privação Materna , Transtornos Mentais/etiologia , Microglia , Córtex Pré-Frontal , Animais , Transtorno Depressivo Maior/etiologia , Modelos Animais de Doenças , Feminino , Hipocampo/crescimento & desenvolvimento , Hipocampo/imunologia , Hipocampo/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Masculino , Microglia/imunologia , Microglia/metabolismo , Córtex Pré-Frontal/crescimento & desenvolvimento , Córtex Pré-Frontal/imunologia , Córtex Pré-Frontal/metabolismo , Gravidez , Ratos , Ratos Wistar
19.
Mol Neurobiol ; 56(1): 186-251, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29687346

RESUMO

Sepsis is systemic inflammatory response syndrome with a life-threatening organ dysfunction that is caused by an unbalanced host immune response in an attempt to eliminate invasive microorganisms. We posed questions, "Does sepsis survivor patients have increased risk of neuropsychiatric manifestations?" and "What is the mechanism by which sepsis induces long-term neurological sequelae, particularly substantial cognitive function decline in survivor patients and in pre-clinical sepsis models?" The studies were identified by searching PubMed/MEDLINE (National Library of Medicine), PsycINFO, EMBASE (Ovid), LILACS (Latin American and Caribbean Health Sciences Literature), IBECS (Bibliographical Index in Spanish in Health Sciences), and Web of Science databases for peer-reviewed journals that were published until January 2018. A total of 3555 papers were included in the primary screening. After that, 130 articles were selected for the study. A number of pre-clinical studies have shown an auto amplification of pro-inflammatory cytokines such as tumor necrosis factor alpha (TNF-α), interleukin (IL)-1ß, and IL-6 in the first few hours after sepsis induction, also increased blood-brain barrier permeability, elevated levels of matrix metalloproteinases, increased levels of damage-associated molecular patterns were demonstrated. In addition, the rodents presented long-term cognitive impairment in different behavioral tasks that were prevented by blocking the mechanism of action of these inflammatory mediators. Clinical studies have showed that sepsis survivors presented increased bodily symptoms such as fatigue, pain, visual disturbances, gastrointestinal problems, and neuropsychiatric problems compared to before sepsis. Sepsis leaves the survivors with an aftermath of physiological, neuropsychiatric, and functional impairment. Systematic review registration: CRD42017071755.


Assuntos
Cognição , Sepse/complicações , Animais , Ensaios Clínicos como Assunto , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/fisiopatologia , Humanos , Compostos Fitoquímicos/uso terapêutico , Fatores de Tempo
20.
Microvasc Res ; 123: 19-24, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30552905

RESUMO

BACKGROUND: The choroid plexus (CP), main component of blood-cerebrospinal fluid barrier (BCSFB), protects the brain from peripheral inflammation similar to the blood-brain barrier. Thus, CP is considered a critical target site of oxidative damage, which in sepsis oxidative stress is likely to be a major step in the development of brain damage. Functional alterations in CP may be associated with sepsis-induced brain injury. However, there is no description on the mechanisms associated with BCSFB disruption during sepsis development. MATERIALS AND METHODS: To test this hypothesis, we examined time-dependent oxidative stress markers in CP and permeability of BCSFB in rats submitted to polymicrobial sepsis by cecal ligation and puncture (CLP) or sham surgery (control). We assessed albumin cerebrospinal fluid/plasma concentration quotient (Qalb), an index of BCSFB dysfunction and in CP samples, the oxidative damage in lipids, proteins, antioxidant enzymes and nitrite/nitrate (N/N) concentration in 12, 24 and 48 h after CLP. RESULTS: The increase of BCSFB permeability is time-related to the increase of N/N concentration, oxidative damage to lipid and proteins, and decrease of antioxidant enzyme superoxide dismutase activity at 12 h in the CP; and decrease of catalase activity in 12 and 24 h. CONCLUSIONS: In experimental sepsis the BCSFB dysfunction occurs and oxidative stress seems to be a major step in this dysfunction.


Assuntos
Plexo Corióideo/irrigação sanguínea , Estresse Oxidativo , Sepse/sangue , Sepse/líquido cefalorraquidiano , Animais , Antioxidantes/metabolismo , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Permeabilidade Capilar , Ceco/microbiologia , Ceco/cirurgia , Modelos Animais de Doenças , Ligadura , Peroxidação de Lipídeos , Masculino , Carbonilação Proteica , Punções , Ratos Wistar , Sepse/microbiologia , Albumina Sérica/líquido cefalorraquidiano , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA