Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 49(22): 13150-13164, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34850144

RESUMO

Genome segregation is a vital process in all organisms. Chromosome partitioning remains obscure in Archaea, the third domain of life. Here, we investigated the SegAB system from Sulfolobus solfataricus. SegA is a ParA Walker-type ATPase and SegB is a site-specific DNA-binding protein. We determined the structures of both proteins and those of SegA-DNA and SegB-DNA complexes. The SegA structure revealed an atypical, novel non-sandwich dimer that binds DNA either in the presence or in the absence of ATP. The SegB structure disclosed a ribbon-helix-helix motif through which the protein binds DNA site specifically. The association of multiple interacting SegB dimers with the DNA results in a higher order chromatin-like structure. The unstructured SegB N-terminus plays an essential catalytic role in stimulating SegA ATPase activity and an architectural regulatory role in segrosome (SegA-SegB-DNA) formation. Electron microscopy results also provide a compact ring-like segrosome structure related to chromosome organization. These findings contribute a novel mechanistic perspective on archaeal chromosome segregation.


Assuntos
Proteínas Arqueais/genética , Segregação de Cromossomos , Cromossomos de Archaea/genética , DNA Arqueal/genética , Sulfolobus solfataricus/genética , Difosfato de Adenosina/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Cromatina/genética , Cromatina/metabolismo , Cromatina/ultraestrutura , Cristalografia por Raios X , DNA Arqueal/química , DNA Arqueal/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Microscopia Eletrônica , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Mutação , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica , Sulfolobus solfataricus/metabolismo
2.
Nucleic Acids Res ; 45(6): 3158-3171, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28034957

RESUMO

Genome segregation is a fundamental step in the life cycle of every cell. Most bacteria rely on dedicated DNA partition proteins to actively segregate chromosomes and low copy-number plasmids. Here, by employing super resolution microscopy, we establish that the ParF DNA partition protein of the ParA family assembles into a three-dimensional meshwork that uses the nucleoid as a scaffold and periodically shuttles between its poles. Whereas ParF specifies the territory for plasmid trafficking, the ParG partner protein dictates the tempo of ParF assembly cycles and plasmid segregation events by stimulating ParF adenosine triphosphate hydrolysis. Mutants in which this ParG temporal regulation is ablated show partition deficient phenotypes as a result of either altered ParF structure or dynamics and indicate that ParF nucleoid localization and dynamic relocation, although necessary, are not sufficient per se to ensure plasmid segregation. We propose a Venus flytrap model that merges the concepts of ParA polymerization and gradient formation and speculate that a transient, dynamic network of intersecting polymers that branches into the nucleoid interior is a widespread mechanism to distribute sizeable cargos within prokaryotic cells.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Plasmídeos/fisiologia , 1-Acilglicerol-3-Fosfato O-Aciltransferase/química , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , DNA/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/análise , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Microscopia de Fluorescência , Mutação , Plasmídeos/genética , Proteínas Repressoras/análise , Proteínas Repressoras/genética , Imagem com Lapso de Tempo
3.
J Biol Chem ; 287(51): 42545-53, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23093445

RESUMO

DNA segregation in bacteria is mediated most frequently by proteins of the ParA superfamily that transport DNA molecules attached via the segrosome nucleoprotein complex. Segregation is governed by a cycle of ATP-induced polymerization and subsequent depolymerization of the ParA factor. Here, we establish that hyperactive ATPase variants of the ParA homolog ParF display altered segrosome dynamics that block accurate DNA segregation. An arginine finger-like motif in the ParG centromere-binding factor augments ParF ATPase activity but is ineffective in stimulating nucleotide hydrolysis by the hyperactive proteins. Moreover, whereas polymerization of wild-type ParF is accelerated by ATP and inhibited by ADP, filamentation of the mutated proteins is blocked indiscriminately by nucleotides. The mutations affect a triplet of conserved residues that are situated neither in canonical nucleotide binding and hydrolysis motifs in the ParF tertiary structure nor at interfaces implicated in ParF polymerization. Instead the residues are involved in shaping the contours of the binding pocket so that nucleotide binding locks the mutant proteins into a configuration that is refractory to polymerization. Thus, the architecture of the pocket not only is crucial for optimal ATPase kinetics but also plays a key role in the polymerization dynamics of ParA proteins that drive DNA segregation ubiquitously in procaryotes.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , DNA Bacteriano/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Família Multigênica , Nucleotídeos/metabolismo , Polimerização , 1-Acilglicerol-3-Fosfato O-Aciltransferase/química , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Arginina/metabolismo , Sítios de Ligação , Segregação de Cromossomos , Sequência Conservada , Cristalografia por Raios X , Proteínas de Escherichia coli/química , Polarização de Fluorescência , Hidrólise , Cinética , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação/genética , Ligação Proteica
4.
J Biol Chem ; 287(31): 26146-54, 2012 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-22674577

RESUMO

Segregation of the bacterial multidrug resistance plasmid TP228 requires the centromere-binding protein ParG, the parH centromere, and the Walker box ATPase ParF. The cycling of ParF between ADP- and ATP-bound states drives TP228 partition; ATP binding stimulates ParF polymerization, which is essential for segregation, whereas ADP binding antagonizes polymerization and inhibits DNA partition. The molecular mechanism involved in this adenine nucleotide switch is unclear. Moreover, it is unknown how any Walker box protein polymerizes in an ATP-dependent manner. Here, we describe multiple ParF structures in ADP- and phosphomethylphosphonic acid adenylate ester (AMPPCP)-bound states. ParF-ADP is monomeric but dimerizes when complexed with AMPPCP. Strikingly, in ParF-AMPPCP structures, the dimers interact to create dimer-of-dimer "units" that generate a specific linear filament. Mutation of interface residues prevents both polymerization and DNA segregation in vivo. Thus, these data provide insight into a unique mechanism by which a Walker box protein forms polymers that involves the generation of ATP-induced dimer-of-dimer building blocks.


Assuntos
Adenosina Trifosfatases/química , Trifosfato de Adenosina/química , Proteínas de Bactérias/química , Proteínas de Ligação a DNA/química , Plasmídeos/fisiologia , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Sequência Conservada , Cristalografia por Raios X , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , DNA Bacteriano/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Polarização de Fluorescência , Dados de Sequência Molecular , Plasmídeos/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína
5.
Proc Natl Acad Sci U S A ; 109(10): 3754-9, 2012 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-22355141

RESUMO

Eukarya and, more recently, some bacteria have been shown to rely on a cytoskeleton-based apparatus to drive chromosome segregation. In contrast, the factors and mechanisms underpinning this fundamental process are underexplored in archaea, the third domain of life. Here we establish that the archaeon Sulfolobus solfataricus harbors a hybrid segrosome consisting of two interacting proteins, SegA and SegB, that play a key role in genome segregation in this organism. SegA is an ortholog of bacterial, Walker-type ParA proteins, whereas SegB is an archaea-specific factor lacking sequence identity to either eukaryotic or bacterial proteins, but sharing homology with a cluster of uncharacterized factors conserved in both crenarchaea and euryarchaea, the two major archaeal sub-phyla. We show that SegA is an ATPase that polymerizes in vitro and that SegB is a site-specific DNA-binding protein contacting palindromic sequences located upstream of the segAB cassette. SegB interacts with SegA in the presence of nucleotides and dramatically affects its polymerization dynamics. Our data demonstrate that SegB strongly stimulates SegA polymerization, possibly by promoting SegA nucleation and accelerating polymer growth. Increased expression levels of segAB resulted in severe growth and chromosome segregation defects, including formation of anucleate cells, compact nucleoids confined to one half of the cell compartment and fragmented nucleoids. The overall picture emerging from our findings indicates that the SegAB complex fulfills a crucial function in chromosome segregation and is the prototype of a DNA partition machine widespread across archaea.


Assuntos
Adenosina Trifosfatases/fisiologia , Archaea/genética , Proteínas Arqueais/fisiologia , Cromossomos/ultraestrutura , Proteínas de Ligação a DNA/fisiologia , DNA/genética , Sulfolobus solfataricus/genética , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Motivos de Aminoácidos , Proteínas Arqueais/genética , Sítios de Ligação , Biotinilação , Análise por Conglomerados , Sequência Conservada , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Dimerização , Regulação da Expressão Gênica , Genes Arqueais , Genoma Arqueal , Estrutura Secundária de Proteína
6.
J Mol Biol ; 374(1): 1-8, 2007 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-17920627

RESUMO

The segrosome is the nucleoprotein complex that mediates accurate segregation of bacterial plasmids. The segrosome of plasmid TP228 comprises ParF and ParG proteins that assemble on the parH centromere. ParF, which exemplifies one clade of the ubiquitous ParA superfamily of segregation proteins, polymerizes extensively in response to ATP binding. Polymerization is modulated by the ParG centromere binding factor (CBF). The segrosomes of plasmids pTAR, pVT745 and pB171 include ParA homologues of the ParF subgroup, as well as diverse homodimeric CBFs with no primary sequence similarity to ParG, or each other. Centromere binding by these analogues is largely specific. Here, we establish that the ParF homologues of pTAR and pB171 filament modestly with ATP, and that nucleotide hydrolysis is not required for this polymerization, which is more prodigious when the cognate CBF is also present. By contrast, the ParF homologue of plasmid pVT745 did not respond appreciably to ATP alone, but polymerized extensively in the presence of both its cognate CBF and ATP. The co-factors also stimulated nucleotide-independent polymerization of cognate ParF proteins. Moreover, apart from the CBF of pTAR, the disparate ParG analogues promoted polymerization of non-cognate ParF proteins suggesting that filamentation of the ParF proteins is enhanced by a common mechanism. Like ParG, the co-factors may be modular, possessing a centromere-specific interaction domain linked to a flexible region containing determinants that promiscuously stimulate ParF polymerization. The CBFs appear to function as bacterial analogues of formins, microtubule-associated proteins or related ancillary factors that regulate eucaryotic cytoskeletal dynamics.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/química , 1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Trifosfato de Adenosina/metabolismo , Centrômero/metabolismo , Proteínas de Escherichia coli/metabolismo , Trifosfato de Adenosina/química , DNA Bacteriano/metabolismo , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Polímeros
7.
Proc Natl Acad Sci U S A ; 104(6): 1811-6, 2007 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-17261809

RESUMO

The ParF protein of plasmid TP228 belongs to the ubiquitous superfamily of ParA ATPases that drive DNA segregation in bacteria. ATP-bound ParF polymerizes into multistranded filaments. The partner protein ParG is dimeric, consisting of C-termini that interweave into a ribbon-helix-helix domain contacting the centromeric DNA and unstructured N-termini. ParG stimulates ATP hydrolysis by ParF approximately 30-fold. Here, we establish that the mobile tails of ParG are crucial for this enhancement and that arginine R19 within the tail is absolutely required for activation of ParF nucleotide hydrolysis. R19 is part of an arginine finger-like loop in ParG that is predicted to intercalate into the ParF nucleotide-binding pocket thereby promoting ATP hydrolysis. Significantly, mutations of R19 abrogated DNA segregation in vivo, proving that intracellular stimulation of ATP hydrolysis by ParG is a key regulatory process for partitioning. Furthermore, ParG bundles ParF-ATP filaments as well as promoting nucleotide-independent polymerization. The N-terminal flexible tail is required for both activities, because N-terminal DeltaParG polypeptides are defective in both functions. Strikingly, the critical arginine finger-like residue R19 is dispensable for ParG-mediated remodeling of ParF polymers, revealing that the ParG N-terminal tail possesses two separable activities in the interplay with ParF: a catalytic function during ATP hydrolysis and a mechanical role in modulation of polymerization. We speculate that activation of nucleotide hydrolysis via an arginine finger loop may be a conserved, regulatory mechanism of ParA family members and their partner proteins, including ParA-ParB and Soj-Spo0J that mediate DNA segregation and MinD-MinE that determine septum localization.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Trifosfato de Adenosina/metabolismo , Arginina/fisiologia , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiologia , Proteínas Repressoras/fisiologia , 1-Acilglicerol-3-Fosfato O-Aciltransferase/química , Trifosfato de Adenosina/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Arginina/química , DNA Bacteriano/metabolismo , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Dados de Sequência Molecular , Proteínas Repressoras/química
8.
EMBO J ; 24(7): 1453-64, 2005 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-15775965

RESUMO

Prokaryotic DNA segregation most commonly involves members of the Walker-type ParA superfamily. Here we show that the ParF partition protein specified by the TP228 plasmid is a ParA ATPase that assembles into extensive filaments in vitro. Polymerization is potentiated by ATP binding and does not require nucleotide hydrolysis. Analysis of mutations in conserved residues of the Walker A motif established a functional coupling between filament dynamics and DNA partitioning. The partner partition protein ParG plays two separable roles in the ParF polymerization process. ParF is unrelated to prokaryotic polymerizing proteins of the actin or tubulin families, but is a homologue of the MinD cell division protein, which also assembles into filaments. The ultrastructures of the ParF and MinD polymers are remarkably similar. This points to an evolutionary parallel between DNA segregation and cytokinesis in prokaryotic cells, and reveals a potential molecular mechanism for plasmid and chromosome segregation mediated by the ubiquitous ParA-type proteins.


Assuntos
Aciltransferases/fisiologia , Adenosina Trifosfatases/fisiologia , Segregação de Cromossomos/fisiologia , Escherichia coli/fisiologia , Plasmídeos/fisiologia , 1-Acilglicerol-3-Fosfato O-Aciltransferase , Aciltransferases/genética , Aciltransferases/ultraestrutura , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Cromatografia em Camada Fina , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Cinética , Microscopia Eletrônica , Plasmídeos/metabolismo , Polímeros/metabolismo
9.
Mol Microbiol ; 49(2): 487-99, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12828644

RESUMO

The mechanism by which low copy number plasmids are segregated at cell division involves the concerted action of two plasmid-encoded proteins that assemble on a centromere-like site. This study explores the topology of the DNA segregation machinery specified by the parFG locus of TP228, a partition system which is phylogenetically distinct from more well-characterized archetypes. A variety of genetic, biochemical and biophysical strategies revealed that the ParG protein is dimeric. ParF, which is more closely related to the cell division regulator MinD than to the prototypical ParA partition protein of plasmid P1, is instead multimeric and its polymeric state appears to be modulated by ATP which correlates with the proposed ATP-binding activity of ParF. ParG interacts in a sequence-specific manner with the DNA region upstream of the parFG locus and this binding is modulated by ParF. Intriguingly, the ParF and ParG proteins form at least two types of discrete complex in the absence of this region suggesting that the assembly dynamics of these proteins onto DNA is intricate.


Assuntos
Proteínas de Bactérias/metabolismo , Genes Bacterianos , Plasmídeos/genética , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/genética , Sequência de Bases , Replicação do DNA , DNA Bacteriano , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dimerização , Substâncias Macromoleculares , Plasmídeos/metabolismo , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA