Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Exp Mol Med ; 56(3): 549-558, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38443597

RESUMO

Hematopoiesis can occur outside of the bone marrow during inflammatory stress to increase the production of primarily myeloid cells at extramedullary sites; this process is known as extramedullary hematopoiesis (EMH). As observed in a broad range of hematologic and nonhematologic diseases, EMH is now recognized for its important contributions to solid tumor pathology and prognosis. To initiate EMH, hematopoietic stem cells (HSCs) are mobilized from the bone marrow into the circulation and to extramedullary sites such as the spleen and liver. At these sites, HSCs primarily produce a pathological subset of myeloid cells that contributes to tumor pathology. The EMH HSC niche, which is distinct from the bone marrow HSC niche, is beginning to be characterized. The important cytokines that likely contribute to initiating and maintaining the EMH niche are KIT ligands, CXCL12, G-CSF, IL-1 family members, LIF, TNFα, and CXCR2. Further study of the role of EMH may offer valuable insights into emergency hematopoiesis and therapeutic approaches against cancer. Exciting future directions for the study of EMH include identifying common and distinct EMH mechanisms in cancer, infectious diseases, and chronic autoimmune diseases to control these conditions.


Assuntos
Hematopoese Extramedular , Neoplasias , Humanos , Hematopoese , Células-Tronco Hematopoéticas , Medula Óssea , Doença Crônica
2.
PLoS Biol ; 21(5): e3001746, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37134077

RESUMO

Extramedullary hematopoiesis (EMH) expands hematopoietic capacity outside of the bone marrow in response to inflammatory conditions, including infections and cancer. Because of its inducible nature, EMH offers a unique opportunity to study the interaction between hematopoietic stem and progenitor cells (HSPCs) and their niche. In cancer patients, the spleen frequently serves as an EMH organ and provides myeloid cells that may worsen pathology. Here, we examined the relationship between HSPCs and their splenic niche in EMH in a mouse breast cancer model. We identify tumor produced IL-1α and leukemia inhibitory factor (LIF) acting on splenic HSPCs and splenic niche cells, respectively. IL-1α induced TNFα expression in splenic HSPCs, which then activated splenic niche activity, while LIF induced proliferation of splenic niche cells. IL-1α and LIF display cooperative effects in activating EMH and are both up-regulated in some human cancers. Together, these data expand avenues for developing niche-directed therapies and further exploring EMH accompanying inflammatory pathologies like cancer.


Assuntos
Doenças Hematológicas , Hematopoese Extramedular , Neoplasias , Humanos , Animais , Camundongos , Hematopoese Extramedular/fisiologia , Fator Inibidor de Leucemia/farmacologia , Interleucina-1alfa/farmacologia , Hematopoese
3.
J Immunol ; 209(4): 742-750, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35868637

RESUMO

The local microenvironment shapes macrophage differentiation in each tissue. We hypothesized that in the peritoneum, local factors in addition to retinoic acid can support GATA6-driven differentiation and function of peritoneal large cavity macrophages (LCMs). We found that soluble proteins produced by mesothelial cells lining the peritoneal cavity maintained GATA6 expression in cultured LCMs. Analysis of global gene expression of isolated mesothelial cells highlighted mesothelin (Msln) and its binding partner mucin 16 (Muc16) as candidate secreted ligands that potentially regulate GATA6 expression in peritoneal LCMs. Mice deficient for either of these molecules showed diminished GATA6 expression in peritoneal and pleural LCMs that was most prominent in aged mice. The more robust phenotype in older mice suggested that monocyte-derived macrophages were the target of Msln and Muc16. Cell transfer and bone marrow chimera experiments supported this hypothesis. We found that lethally irradiated Msln-/- and Muc16-/- mice reconstituted with wild-type bone marrow had lower levels of GATA6 expression in peritoneal and pleural LCMs. Similarly, during the resolution of zymosan-induced inflammation, repopulated peritoneal LCMs lacking expression of Msln or Muc16 expressed diminished GATA6. These data support a role for mesothelial cell-produced Msln and Muc16 in local macrophage differentiation within large cavity spaces such as the peritoneum. The effect appears to be most prominent on monocyte-derived macrophages that enter into this location as the host ages and also in response to infection.


Assuntos
Macrófagos Peritoneais , Macrófagos , Camundongos , Animais , Cavidade Peritoneal , Peritônio , Epitélio
4.
Science ; 371(6534): 1154-1159, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33707263

RESUMO

Alterations of the mycobiota composition associated with Crohn's disease (CD) are challenging to link to defining elements of pathophysiology, such as poor injury repair. Using culture-dependent and -independent methods, we discovered that Debaryomyces hansenii preferentially localized to and was abundant within incompletely healed intestinal wounds of mice and inflamed mucosal tissues of CD human subjects. D. hansenii cultures from injured mice and inflamed CD tissues impaired colonic healing when introduced into injured conventionally raised or gnotobiotic mice. We reisolated D. hansenii from injured areas of these mice, fulfilling Koch's postulates. Mechanistically, D. hansenii impaired mucosal healing through the myeloid cell-specific type 1 interferon-CCL5 axis. Taken together, we have identified a fungus that inhabits inflamed CD tissue and can lead to dysregulated mucosal healing.


Assuntos
Doença de Crohn/microbiologia , Doença de Crohn/patologia , Debaryomyces/isolamento & purificação , Debaryomyces/fisiologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Anfotericina B/farmacologia , Animais , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Quimiocina CCL5/metabolismo , Colo/microbiologia , Colo/patologia , Doença de Crohn/imunologia , Debaryomyces/crescimento & desenvolvimento , Feminino , Microbioma Gastrointestinal , Vida Livre de Germes , Humanos , Íleo/microbiologia , Íleo/patologia , Inflamação , Interferon Tipo I/metabolismo , Mucosa Intestinal/imunologia , Macrófagos/imunologia , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA