Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
iScience ; 27(7): 109978, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39021796

RESUMO

High-grade serous ovarian cancers (HGSOCs) with homologous recombination deficiency (HRD) are initially responsive to poly (ADP-ribose) polymerase inhibitors (PARPi), but resistance ultimately emerges. HGSOC with CCNE1 amplification (CCNE1 amp) are associated with resistance to PARPi and platinum treatments. High replication stress in HRD and CCNE1 amp HGSOC leads to increased reliance on checkpoint kinase 1 (CHK1), a key regulator of cell cycle progression and the replication stress response. Here, we investigated the anti-tumor activity of the potent, highly selective, orally bioavailable CHK1 inhibitor (CHK1i), SRA737, in both acquired PARPi-resistant BRCA1/2 mutant and CCNE1 amp HGSOC models. We demonstrated that SRA737 increased replication stress and induced subsequent cell death in vitro. SRA737 monotherapy in vivo prolonged survival in CCNE1 amp models, suggesting a potential biomarker for CHK1i therapy. Combination SRA737 and PARPi therapy increased tumor regression in both PARPi-resistant and CCNE1 amp patient-derived xenograft models, warranting further study in these HGSOC subgroups.

2.
Ther Adv Med Oncol ; 15: 17588359231208674, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38028140

RESUMO

Background: Despite initial response to platinum-based chemotherapy and PARP inhibitor therapy (PARPi), nearly all recurrent high-grade serous ovarian cancer (HGSC) will acquire lethal drug resistance; indeed, ~15% of individuals have de novo platinum-refractory disease. Objectives: To determine the potential of anti-microtubule agent (AMA) therapy (paclitaxel, vinorelbine and eribulin) in platinum-resistant or refractory (PRR) HGSC by assessing response in patient-derived xenograft (PDX) models of HGSC. Design and methods: Of 13 PRR HGSC PDX, six were primary PRR, derived from chemotherapy-naïve samples (one was BRCA2 mutant) and seven were from samples obtained following chemotherapy treatment in the clinic (five were mutant for either BRCA1 or BRCA2 (BRCA1/2), four with prior PARPi exposure), recapitulating the population of individuals with aggressive treatment-resistant HGSC in the clinic. Molecular analyses and in vivo treatment studies were undertaken. Results: Seven out of thirteen PRR PDX (54%) were sensitive to treatment with the AMA, eribulin (time to progressive disease (PD) ⩾100 days from the start of treatment) and 11 out of 13 PDX (85%) derived significant benefit from eribulin [time to harvest (TTH) for each PDX with p < 0.002]. In 5 out of 10 platinum-refractory HGSC PDX (50%) and one out of three platinum-resistant PDX (33%), eribulin was more efficacious than was cisplatin, with longer time to PD and significantly extended TTH (each PDX p < 0.02). Furthermore, four of these models were extremely sensitive to all three AMA tested, maintaining response until the end of the experiment (120d post-treatment start). Despite harbouring secondary BRCA2 mutations, two BRCA2-mutant PDX models derived from heavily pre-treated individuals were sensitive to AMA. PRR HGSC PDX models showing greater sensitivity to AMA had high proliferative indices and oncogene expression. Two PDX models, both with prior chemotherapy and/or PARPi exposure, were refractory to all AMA, one of which harboured the SLC25A40-ABCB1 fusion, known to upregulate drug efflux via MDR1. Conclusion: The efficacy observed for eribulin in PRR HGSC PDX was similar to that observed for paclitaxel, which transformed ovarian cancer clinical practice. Eribulin is therefore worthy of further consideration in clinical trials, particularly in ovarian carcinoma with early failure of carboplatin/paclitaxel chemotherapy.

3.
Cancers (Basel) ; 15(17)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37686662

RESUMO

BACKGROUND: Epithelioid haemangioendothelioma (EHE) is an ultra-rare malignant vascular tumour with a prevalence of 1 per 1,000,000. It is typically molecularly characterised by a WWTR1::CAMTA1 gene fusion in approximately 90% of cases, or a YAP1::TFE3 gene fusion in approximately 10% of cases. EHE cases are typically refractory to therapies, and no anticancer agents are reimbursed for EHE in Australia. METHODS: We report a cohort of nine EHE cases with comprehensive histologic and molecular profiling from the Walter and Eliza Hall Institute of Medical Research Stafford Fox Rare Cancer Program (WEHI-SFRCP) collated via nation-wide referral to the Australian Rare Cancer (ARC) Portal. The diagnoses of EHE were confirmed by histopathological and immunohistochemical (IHC) examination. Molecular profiling was performed using the TruSight Oncology 500 assay, the TruSight RNA fusion panel, whole genome sequencing (WGS), or whole exome sequencing (WES). RESULTS: Molecular analysis of RNA, DNA or both was possible in seven of nine cases. The WWTR1::CAMTA1 fusion was identified in five cases. The YAP1::TFE3 fusion was identified in one case, demonstrating unique morphology compared to cases with the more common WWTR1::CAMTA1 fusion. All tumours expressed typical endothelial markers CD31, ERG, and CD34 and were negative for pan-cytokeratin. Cases with a WWTR1::CAMTA1 fusion displayed high expression of CAMTA1 and the single case with a YAP1::TFE3 fusion displayed high expression of TFE3. Survival was highly variable and unrelated to molecular profile. CONCLUSIONS: This cohort of EHE cases provides molecular and histopathological characterisation and matching clinical information that emphasises the molecular patterns and variable clinical outcomes and adds to our knowledge of this ultra-rare cancer. Such information from multiple studies will advance our understanding, potentially improving treatment options.

4.
Nat Genet ; 55(8): 1311-1323, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37524790

RESUMO

SF3B1 hotspot mutations are associated with a poor prognosis in several tumor types and lead to global disruption of canonical splicing. Through synthetic lethal drug screens, we identify that SF3B1 mutant (SF3B1MUT) cells are selectively sensitive to poly (ADP-ribose) polymerase inhibitors (PARPi), independent of hotspot mutation and tumor site. SF3B1MUT cells display a defective response to PARPi-induced replication stress that occurs via downregulation of the cyclin-dependent kinase 2 interacting protein (CINP), leading to increased replication fork origin firing and loss of phosphorylated CHK1 (pCHK1; S317) induction. This results in subsequent failure to resolve DNA replication intermediates and G2/M cell cycle arrest. These defects are rescued through CINP overexpression, or further targeted by a combination of ataxia-telangiectasia mutated and PARP inhibition. In vivo, PARPi produce profound antitumor effects in multiple SF3B1MUT cancer models and eliminate distant metastases. These data provide the rationale for testing the clinical efficacy of PARPi in a biomarker-driven, homologous recombination proficient, patient population.


Assuntos
Neoplasias , Inibidores de Poli(ADP-Ribose) Polimerases , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Mutação , Fatores de Transcrição/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Proteína BRCA1/genética , Linhagem Celular Tumoral , Fatores de Processamento de RNA/genética , Fosfoproteínas/genética
5.
J Exp Clin Cancer Res ; 42(1): 112, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37143137

RESUMO

BACKGROUND: Uterine leiomyosarcoma (uLMS) is a rare and aggressive gynaecological malignancy, with individuals with advanced uLMS having a five-year survival of < 10%. Mutations in the homologous recombination (HR) DNA repair pathway have been observed in ~ 10% of uLMS cases, with reports of some individuals benefiting from poly (ADP-ribose) polymerase (PARP) inhibitor (PARPi) therapy, which targets this DNA repair defect. In this report, we screened individuals with uLMS, accrued nationally, for mutations in the HR repair pathway and explored new approaches to therapeutic targeting. METHODS: A cohort of 58 individuals with uLMS were screened for HR Deficiency (HRD) using whole genome sequencing (WGS), whole exome sequencing (WES) or NGS panel testing. Individuals identified to have HRD uLMS were offered PARPi therapy and clinical outcome details collected. Patient-derived xenografts (PDX) were generated for therapeutic targeting. RESULTS: All 13 uLMS samples analysed by WGS had a dominant COSMIC mutational signature 3; 11 of these had high genome-wide loss of heterozygosity (LOH) (> 0.2) but only two samples had a CHORD score > 50%, one of which had a homozygous pathogenic alteration in an HR gene (deletion in BRCA2). A further three samples harboured homozygous HRD alterations (all deletions in BRCA2), detected by WES or panel sequencing, with 5/58 (9%) individuals having HRD uLMS. All five individuals gained access to PARPi therapy. Two of three individuals with mature clinical follow up achieved a complete response or durable partial response (PR) with the subsequent addition of platinum to PARPi upon minor progression during initial PR on PARPi. Corresponding PDX responses were most rapid, complete and sustained with the PARP1-specific PARPi, AZD5305, compared with either olaparib alone or olaparib plus cisplatin, even in a paired sample of a BRCA2-deleted PDX, derived following PARPi therapy in the patient, which had developed PARPi-resistance mutations in PRKDC, encoding DNA-PKcs. CONCLUSIONS: Our work demonstrates the value of identifying HRD for therapeutic targeting by PARPi and platinum in individuals with the aggressive rare malignancy, uLMS and suggests that individuals with HRD uLMS should be included in trials of PARP1-specific PARPi.


Assuntos
Leiomiossarcoma , Neoplasias Ovarianas , Neoplasias Uterinas , Feminino , Humanos , Leiomiossarcoma/tratamento farmacológico , Leiomiossarcoma/genética , Leiomiossarcoma/patologia , Platina , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Neoplasias Uterinas/tratamento farmacológico , Neoplasias Uterinas/genética , Poli(ADP-Ribose) Polimerases , Reparo de DNA por Recombinação , Neoplasias Ovarianas/patologia , Recombinação Homóloga
6.
medRxiv ; 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36993400

RESUMO

BRCA1 splice isoforms Δ11 and Δ11q can contribute to PARP inhibitor (PARPi) resistance by splicing-out the mutation-containing exon, producing truncated, partially-functional proteins. However, the clinical impact and underlying drivers of BRCA1 exon skipping remain undetermined. We analyzed nine ovarian and breast cancer patient derived xenografts (PDX) with BRCA1 exon 11 frameshift mutations for exon skipping and therapy response, including a matched PDX pair derived from a patient pre- and post-chemotherapy/PARPi. BRCA1 exon 11 skipping was elevated in PARPi resistant PDX tumors. Two independent PDX models acquired secondary BRCA1 splice site mutations (SSMs), predicted in silico to drive exon skipping. Predictions were confirmed using qRT-PCR, RNA sequencing, western blots and BRCA1 minigene modelling. SSMs were also enriched in post-PARPi ovarian cancer patient cohorts from the ARIEL2 and ARIEL4 clinical trials. We demonstrate that SSMs drive BRCA1 exon 11 skipping and PARPi resistance, and should be clinically monitored, along with frame-restoring secondary mutations.

7.
Cancer Res ; 82(23): 4457-4473, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36206301

RESUMO

Ovarian carcinosarcoma (OCS) is an aggressive and rare tumor type with limited treatment options. OCS is hypothesized to develop via the combination theory, with a single progenitor resulting in carcinomatous and sarcomatous components, or alternatively via the conversion theory, with the sarcomatous component developing from the carcinomatous component through epithelial-to-mesenchymal transition (EMT). In this study, we analyzed DNA variants from isolated carcinoma and sarcoma components to show that OCS from 18 women is monoclonal. RNA sequencing indicated that the carcinoma components were more mesenchymal when compared with pure epithelial ovarian carcinomas, supporting the conversion theory and suggesting that EMT is important in the formation of these tumors. Preclinical OCS models were used to test the efficacy of microtubule-targeting drugs, including eribulin, which has previously been shown to reverse EMT characteristics in breast cancers and induce differentiation in sarcomas. Vinorelbine and eribulin more effectively inhibited OCS growth than standard-of-care platinum-based chemotherapy, and treatment with eribulin reduced mesenchymal characteristics and N-MYC expression in OCS patient-derived xenografts. Eribulin treatment resulted in an accumulation of intracellular cholesterol in OCS cells, which triggered a downregulation of the mevalonate pathway and prevented further cholesterol biosynthesis. Finally, eribulin increased expression of genes related to immune activation and increased the intratumoral accumulation of CD8+ T cells, supporting exploration of immunotherapy combinations in the clinic. Together, these data indicate that EMT plays a key role in OCS tumorigenesis and support the conversion theory for OCS histogenesis. Targeting EMT using eribulin could help improve OCS patient outcomes. SIGNIFICANCE: Genomic analyses and preclinical models of ovarian carcinosarcoma support the conversion theory for disease development and indicate that microtubule inhibitors could be used to suppress EMT and stimulate antitumor immunity.


Assuntos
Antineoplásicos , Carcinoma , Carcinossarcoma , Neoplasias Ovarianas , Humanos , Feminino , Transição Epitelial-Mesenquimal/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Transformação Celular Neoplásica , Antineoplásicos/farmacologia , Microtúbulos , Carcinossarcoma/genética , Carcinossarcoma/patologia
8.
Cancers (Basel) ; 14(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35326717

RESUMO

Uterine leiomyosarcoma (uLMS) is a rare and aggressive gynaecological malignancy. Surgical removal and chemotherapy are commonly used to treat uLMS, but recurrence rates are high. Over the last few decades, clarification of the genomic landscape of uLMS has revealed a number of recurring mutations, including TP53, RB1, ATRX, PTEN, and MED12. Such genomic aberrations are difficult to target therapeutically or are actively targeted in other malignancies, and their potential as targets for the treatment of uLMS remains largely unexplored. Recent identification of deficiencies in homologous recombination in a minority of these tumours, however, has provided a rationale for investigation of PARP inhibitors in this sub-set. Here, we review these mutations and the evidence for therapeutic avenues that may be applied in uLMS. We also provide a comprehensive background on diagnosis and current therapeutic strategies as well as reviewing preclinical models of uLMS, which may be employed not only in testing emerging therapies but also in understanding this challenging and deadly disease.

9.
Cancer Res ; 81(4): 847-859, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33509944

RESUMO

Triple-negative breast cancers (TNBC) are resistant to standard-of-care chemotherapy and lack known targetable driver gene alterations. Identification of novel drivers could aid the discovery of new treatment strategies for this hard-to-treat patient population, yet studies using high-throughput and accurate models to define the functions of driver genes in TNBC to date have been limited. Here, we employed unbiased functional genomics screening of the 200 most frequently mutated genes in breast cancer, using spheroid cultures to model in vivo-like conditions, and identified the histone acetyltransferase CREBBP as a novel tumor suppressor in TNBC. CREBBP protein expression in patient tumor samples was absent in 8% of TNBCs and at a high frequency in other tumors, including squamous lung cancer, where CREBBP-inactivating mutations are common. In TNBC, CREBBP alterations were associated with higher genomic heterogeneity and poorer patient survival and resulted in upregulation and dependency on a FOXM1 proliferative program. Targeting FOXM1-driven proliferation indirectly with clinical CDK4/6 inhibitors (CDK4/6i) selectively impaired growth in spheroids, cell line xenografts, and patient-derived models from multiple tumor types with CREBBP mutations or loss of protein expression. In conclusion, we have identified CREBBP as a novel driver in aggressive TNBC and identified an associated genetic vulnerability in tumor cells with alterations in CREBBP and provide a preclinical rationale for assessing CREBBP alterations as a biomarker of CDK4/6i response in a new patient population. SIGNIFICANCE: This study demonstrates that CREBBP genomic alterations drive aggressive TNBC, lung cancer, and lymphomas and may be selectively treated with clinical CDK4/6 inhibitors.


Assuntos
Proteína de Ligação a CREB/fisiologia , Carcinogênese/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Animais , Proteína de Ligação a CREB/genética , Proliferação de Células/genética , Células Cultivadas , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Feminino , Genômica/métodos , Células HCT116 , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos Nus , Terapia de Alvo Molecular , Mutação , Invasividade Neoplásica , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Addict Biol ; 26(4): e12986, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33274546

RESUMO

Cigarette smoking is still the largest contributor to disease and death worldwide. Successful cessation is hindered by decreases in prefrontal glutamate concentrations and gray matter volume due to daily smoking. Because nondaily, intermittent smoking also contributes greatly to disease and death, understanding whether infrequent tobacco use is associated with reductions in prefrontal glutamate concentrations and gray matter volume may aid public health. Eighty-five young participants (41 nonsmokers, 24 intermittent smokers, 20 daily smokers, mean age ~23 years old), underwent 1 H-magnetic resonance spectroscopy of the medial prefrontal cortex, as well as structural magnetic resonance imaging (MRI) to determine whole-brain gray matter volume. Compared with nonsmokers, both daily and intermittent smokers exhibited lower concentrations of glutamate, creatine, N-acetylaspartate, and myo-inositol in the medial prefrontal cortex, and lower gray matter volume in the right inferior frontal gyrus; these measures of prefrontal metabolites and structure did not differ between daily and intermittent smokers. Finally, medial prefrontal metabolite concentrations and right inferior frontal gray matter volume were positively correlated, but these relationships were not influenced by smoking status. This study provides the first evidence that both daily and intermittent smoking are associated with low concentrations of glutamate, creatine, N-acetylaspartate, and myo-inositol and low gray matter volume in the prefrontal cortex. Future tobacco cessation efforts should not ignore potential deleterious effects of intermittent smoking by considering only daily smokers. Finally, because low glutamate concentrations hinder cessation, treatments that can normalize tonic levels of prefrontal glutamate, such as N-acetylcysteine, may help intermittent and daily smokers to quit.


Assuntos
Ácido Aspártico/análogos & derivados , Fumar Cigarros/metabolismo , Creatina/metabolismo , Ácido Glutâmico/metabolismo , Substância Cinzenta/patologia , Inositol/metabolismo , Adulto , Ácido Aspártico/metabolismo , Colina/metabolismo , Feminino , Giro do Cíngulo/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Córtex Pré-Frontal/metabolismo , Adulto Jovem
11.
Semin Cancer Biol ; 61: 110-120, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31622660

RESUMO

Gynaecological carcinosarcomas are the most lethal gynaecological malignancies that are often highly resistant to standard chemotherapy. They are composed of both carcinomatous and sarcomatous components and are associated with high rates of metastatic disease. Due to their rarity, molecular studies have been carried out on relatively few tumours, revealing a broad spectrum of heterogeneity. In this review, we have collated the gene mutations, gene expression, epigenetic regulation and protein expression reported by a number of studies on gynaecological carcinosarcomas. Based on these results, we describe potential therapeutics that may demonstrate efficacy and present any pre-clinical studies that have been carried out. We also describe the pre-clinical models currently available for future research to assess the potential of molecularly matched therapies. Interestingly, over-expression of many biomarkers in carcinosarcoma tumours often doesn't correlate with a worse prognosis. Therefore, we propose that profiling the mutational landscape, gene expression, and gene amplification/deletion may better indicate potential treatment strategies and predict response, thus improving outcomes for women with this rare, aggressive disease.


Assuntos
Carcinossarcoma/genética , Carcinossarcoma/terapia , Predisposição Genética para Doença , Neoplasias dos Genitais Femininos/genética , Neoplasias dos Genitais Femininos/terapia , Genômica , Animais , Carcinossarcoma/diagnóstico , Carcinossarcoma/mortalidade , Gerenciamento Clínico , Modelos Animais de Doenças , Feminino , Neoplasias dos Genitais Femininos/diagnóstico , Neoplasias dos Genitais Femininos/mortalidade , Genômica/métodos , Humanos , Prognóstico , Pesquisa Translacional Biomédica
15.
Front Oncol ; 8: 245, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30057890

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is a significant cause of cancer deaths. Cisplatin-based chemoradiotherapy is a standard of care for locally advanced disease. ATR and DNA-PK inhibition (DNA-PKi) are actively being investigated in clinical trials with preclinical data supporting clinical translation as radiosensitizers. Here, we hypothesized that targeting both ATR and DNA-PK with small molecule inhibitors would increase radiosensitization of HNSCC cell lines. Radiosensitization was assessed by Bliss independence analysis of colony survival data. Strong cell cycle perturbing effects were observed with ATR inhibition reversing the G2/M arrest observed for radiation-DNA-PKi. Increased apoptosis in combination groups was measured by Sub-G1 DNA populations. DNA-PKi increased radiation-induced RAD51 and gamma-H2Ax foci, with the addition of ATR inhibition reducing levels of both. A sharp increase in nuclear fragmentation after aberrant mitotic transit appears to be the main driver of decreased survival due to irradiation and dual ATR/DNA-PKi. Dual inhibition of DNA-PK and ATR represents a novel approach in combination with radiation, with efficacy appearing to be independent of p53 status. Due to toxicity concerns, careful assessment is necessary in any future translation of single or dual radiosensitization approaches. Ongoing clinical trials into the ATR inhibitor AZD6738 plus radiation, and the phenotypically similar combination of AZD6738 and the PARP inhibitor olaparib, are likely to be key in ascertaining the toxicity profile of such combinations.

16.
Cancer Discov ; 7(9): 984-998, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28588062

RESUMO

High-grade epithelial ovarian carcinomas containing mutated BRCA1 or BRCA2 (BRCA1/2) homologous recombination (HR) genes are sensitive to platinum-based chemotherapy and PARP inhibitors (PARPi), while restoration of HR function due to secondary mutations in BRCA1/2 has been recognized as an important resistance mechanism. We sequenced core HR pathway genes in 12 pairs of pretreatment and postprogression tumor biopsy samples collected from patients in ARIEL2 Part 1, a phase II study of the PARPi rucaparib as treatment for platinum-sensitive, relapsed ovarian carcinoma. In 6 of 12 pretreatment biopsies, a truncation mutation in BRCA1, RAD51C, or RAD51D was identified. In five of six paired postprogression biopsies, one or more secondary mutations restored the open reading frame. Four distinct secondary mutations and spatial heterogeneity were observed for RAD51CIn vitro complementation assays and a patient-derived xenograft, as well as predictive molecular modeling, confirmed that resistance to rucaparib was associated with secondary mutations.Significance: Analyses of primary and secondary mutations in RAD51C and RAD51D provide evidence for these primary mutations in conferring PARPi sensitivity and secondary mutations as a mechanism of acquired PARPi resistance. PARPi resistance due to secondary mutations underpins the need for early delivery of PARPi therapy and for combination strategies. Cancer Discov; 7(9); 984-98. ©2017 AACR.See related commentary by Domchek, p. 937See related article by Quigley et al., p. 999See related article by Goodall et al., p. 1006This article is highlighted in the In This Issue feature, p. 920.


Assuntos
Proteínas de Ligação a DNA/genética , Resistencia a Medicamentos Antineoplásicos/genética , Indóis/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Animais , Células CHO , Linhagem Celular Tumoral , Cricetulus , Feminino , Células HEK293 , Humanos , Mutação , Neoplasias Ovarianas/genética
17.
BMC Cancer ; 17(1): 86, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28143445

RESUMO

BACKGROUND: Concurrent cisplatin radiotherapy (CCRT) is a current standard-of-care for locally advanced head and neck squamous cell carcinoma (HNSCC). However, CCRT is frequently ineffective in patients with advanced disease. It has previously been shown that HSP90 inhibitors act as radiosensitizers, but these studies have not focused on CCRT in HNSCC. Here, we evaluated the HSP90 inhibitor, AUY922, combined with CCRT. METHODS: The ability of AUY922 to sensitize to CCRT was assessed in p53 mutant head and neck cell lines by clonogenic assay. Modulation of the CCRT induced DNA damage response (DDR) by AUY922 was characterized by confocal image analysis of RAD51, BRCA1, 53BP1, ATM and mutant p53 signaling. The role of FANCA depletion by AUY922 was examined using shRNA. Cell cycle checkpoint abrogation and chromosomal fragmentation was assessed by western blot, FACS and confocal. The role of ATM was also assessed by shRNA. AUY922 in combination with CCRT was assessed in vivo. RESULTS: The combination of AUY922 with cisplatin, radiation and CCRT was found to be synergistic in p53 mutant HNSCC. AUY922 leads to significant alterations to the DDR induced by CCRT. This comprises inhibition of homologous recombination through decreased RAD51 and pS1524 BRCA1 with a corresponding increase in 53BP1 foci, activation of ATM and signaling into mutant p53. A shift to more error prone repair combined with a loss of checkpoint function leads to fragmentation of chromosomal material. The degree of disruption to DDR signalling correlated to chromosomal fragmentation and loss of clonogenicity. ATM shRNA indicated a possible rationale for the combination of AUY922 and CCRT in cells lacking ATM function. CONCLUSIONS: This study supports future clinical studies combining AUY922 and CCRT in p53 mutant HNSCC. Modulation of the DDR and chromosomal fragmentation are likely to be analytical points of interest in such trials.


Assuntos
Cromossomos/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Isoxazóis/farmacologia , Compostos Organoplatínicos/farmacologia , Resorcinóis/farmacologia , Animais , Proteína BRCA1/genética , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/radioterapia , Linhagem Celular Tumoral , Quimiorradioterapia/métodos , Cromossomos/genética , Dano ao DNA/genética , Dano ao DNA/efeitos da radiação , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/genética , Reparo do DNA/efeitos da radiação , Feminino , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/radioterapia , Recombinação Homóloga/efeitos dos fármacos , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Inibidores de Proteínas Quinases/farmacologia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Proteína Supressora de Tumor p53/genética
18.
Radiother Oncol ; 122(3): 470-475, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28131548

RESUMO

PURPOSE: Chk1 inhibition increases cell sensitivity to both chemotherapy and radiotherapy in several tumour types and is, therefore, a promising anti-cancer approach. Although several Chk1 inhibitors have been developed, their clinical progress has been hampered by low bioavailability and off-target toxicities. MATERIALS AND METHODS: We characterized the radiosensitizing activity of CCT244747, the first orally bioavailable Chk1 inhibitor. We used a panel of bladder and head and neck cancer cell lines and monitored the effect of combining CCT244747 with radiation both in in vitro and in vivo models. RESULTS: CCT244747 sensitized cancer cell lines to radiation in vitro and resulted in a growth delay in cancer xenograft models associated with a survival benefit. Radiosensitization was elicited by abrogation of the radiation-induced G2 arrest and premature entry into mitosis. CONCLUSIONS: CCT244747 is a potent and specific Chk1 inhibitor that can be administered orally. It radiosensitizes tumour cell lines and represents a new therapy for clinical application in combination with radiotherapy.


Assuntos
Aminopiridinas/farmacologia , Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Neoplasias de Cabeça e Pescoço/radioterapia , Pirimidinas/farmacologia , Radiossensibilizantes/farmacologia , Neoplasias da Bexiga Urinária/radioterapia , Administração Oral , Animais , Linhagem Celular Tumoral , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Neoplasias de Cabeça e Pescoço/patologia , Histonas/análise , Humanos , Camundongos , Neoplasias da Bexiga Urinária/patologia
19.
Mol Cancer Ther ; 16(1): 25-34, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28062704

RESUMO

AZD6738 is an orally active ATR inhibitor (ATRi) currently in phase I clinical trials. We found in vitro growth inhibitory activity of this ATRi in a panel of human cancer cell lines. We demonstrated radiosensitization by AZD6738 to single radiation fractions in multiple cancer cell lines independent of both p53 and BRCA2 status by the clonogenic assay. Radiosensitization by AZD6738 to clinically relevant doses of fractionated radiation was demonstrated in vitro using a 3D tumor spheroid model and, in vivo, AZD6738 radiosensitized by abrogating the radiation-induced G2 cell-cycle checkpoint and inhibiting homologous recombination. Mitosis with damaged DNA resulted in mitotic catastrophe as measured by micronucleus formation by live-cell fluorescent-ubiquitination cell-cycle imaging of cell-cycle progression and nuclear morphology. Induction of micronuclei was significantly more prominent for AZD6738 compared with inhibition of the downstream kinase CHK1 alone at isoeffective doses. Micronuclei were characterized as acentric chromosomal fragments, which displayed characteristics of increased DNA damage and cell-cycle dyssynchrony when compared with the primary nucleus. Mol Cancer Ther; 16(1); 25-34. ©2016 AACR.


Assuntos
Micronúcleos com Defeito Cromossômico/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Radiossensibilizantes/farmacologia , Sulfóxidos/farmacologia , Animais , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Modelos Animais de Doenças , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos da radiação , Recombinação Homóloga/efeitos dos fármacos , Recombinação Homóloga/efeitos da radiação , Humanos , Indóis , Concentração Inibidora 50 , Camundongos , Micronúcleos com Defeito Cromossômico/efeitos da radiação , Morfolinas , Tolerância a Radiação/efeitos dos fármacos , Radiação Ionizante , Sulfonamidas , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/efeitos da radiação , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
20.
J Pathol ; 240(3): 315-328, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27512948

RESUMO

The initiation and progression of breast cancer from the transformation of the normal epithelium to ductal carcinoma in situ (DCIS) and invasive disease is a complex process involving the acquisition of genetic alterations and changes in gene expression, alongside microenvironmental and recognized histological alterations. Here, we sought to comprehensively characterise the genomic and transcriptomic features of the MCF10 isogenic model of breast cancer progression, and to functionally validate potential driver alterations in three-dimensional (3D) spheroids that may provide insights into breast cancer progression, and identify targetable alterations in conditions more similar to those encountered in vivo. We performed whole genome, exome and RNA sequencing of the MCF10 progression series to catalogue the copy number and mutational and transcriptomic landscapes associated with progression. We identified a number of predicted driver mutations (including PIK3CA and TP53) that were acquired during transformation of non-malignant MCF10A cells to their malignant counterparts that are also present in analysed primary breast cancers from The Cancer Genome Atlas (TCGA). Acquisition of genomic alterations identified MYC amplification and previously undescribed RAB3GAP1-HRAS and UBA2-PDCD2L expressed in-frame fusion genes in malignant cells. Comparison of pathway aberrations associated with progression showed that, when cells are grown as 3D spheroids, they show perturbations of cancer-relevant pathways. Functional interrogation of the dependency on predicted driver events identified alterations in HRAS, PIK3CA and TP53 that selectively decreased cell growth and were associated with progression from preinvasive to invasive disease only when cells were grown as spheroids. Our results have identified changes in the genomic repertoire in cell lines representative of the stages of breast cancer progression, and demonstrate that genetic dependencies can be uncovered when cells are grown in conditions more like those in vivo. The MCF10 progression series therefore represents a good model with which to dissect potential biomarkers and to evaluate therapeutic targets involved in the progression of breast cancer. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias da Mama/genética , Carcinoma Ductal de Mama/genética , Carcinoma Intraductal não Infiltrante/genética , Modelos Biológicos , Fosfatidilinositol 3-Quinases/genética , Transcriptoma , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/patologia , Carcinoma Intraductal não Infiltrante/patologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Classe I de Fosfatidilinositol 3-Quinases , DNA de Neoplasias/química , DNA de Neoplasias/genética , Progressão da Doença , Exoma/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , Fosfatidilinositol 3-Quinases/metabolismo , Análise de Sequência de DNA , Esferoides Celulares , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA