Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 12: 1004014, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36300096

RESUMO

Among the main metabolic pathways implicated in cancer cell proliferation are those of cholesterol and fatty acid synthesis, both of which are tightly regulated by sterol regulatory element-binding proteins (SREBPs). SREBPs are activated through specific cleavage by membrane-bound transcription factor protease 1 (MBTPS1), a serine protease that cleaves additional substrates (ATF6, BDNF, CREBs and somatostatin), some of which are also implicated in cell proliferation. The goal of this study was to determine whether MBTPS1 may serve as a master regulator in proliferation of colorectal cancer (CRC). Tumors from CRC patients showed variable levels of MBTPS1 mRNA, which were in positive correlation with the levels of SREBPs and ATF6, and in reverse correlation with BDNF levels. Chemical inhibition of MBTPS1 activity in two CRC-derived cell lines resulted in a marked decrease in the levels of SREBPs, but not of its other substrates and a marked decrease in cell proliferation, which suggested that MBTPS1 activity is critical for proliferation of these cells. In accordance, CRISPR/Cas9 targeted knockout (KO) of the MBTPS1 gene resulted in the survival of only a single clone that presented a phenotype of severely attenuated proliferation and marked downregulation of several energy metabolism pathways. We further showed that survival of the MBTPS1 KO clone was dependent upon significant upregulation of the type-1 interferon pathway, the inhibition of which halted proliferation entirely. Finally, rescue of the MBTPS1 KO cells, resulted in partial restoration of MBTPS1 levels, which was in accordance with partial recovery in proliferation and in SREBP levels. These finding suggest that MBTPS1 plays a critical role in regulating colon cancer proliferation primarily through SREBP-associated lipid metabolism, and as such may serve as a possible therapeutic target in CRC.

2.
Int J Mol Sci ; 21(9)2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32366045

RESUMO

Accumulating evidence suggests that the cyclooxygenase-2 (COX-2) enzyme has additional catalytic-independent functions. Here we show that COX-2 appears to be cleaved in mouse and human tumors, which led us to hypothesize that COX-2 proteolysis may play a role in cell proliferation. The data presented herein show that a K598R point mutation at the carboxyl-terminus of COX-2 causes the appearance of several COX-2 immunoreactive fragments in nuclear compartments, and significantly enhances cell proliferation. In contrast, insertion of additional mutations at the border of the membrane-binding and catalytic domains of K598R COX-2 blocks fragment formation and prevents the increase in proliferation. Transcriptomic analyses show that K598R COX-2 significantly affects the expression of genes involved in RNA metabolism, and subsequent proteomics suggest that it is associated with proteins that regulate mRNA processing. We observe a similar increase in proliferation by expressing just that catalytic domain of COX-2 (ΔNT- COX-2), which is completely devoid of catalytic activity in the absence of its other domains. Moreover, we show that the ΔNT- COX-2 protein also interacts in the nucleus with ß-catenin, a central regulator of gene transcription. Together these data suggest that the cleavage products of COX-2 can affect cell proliferation by mechanisms that are independent of prostaglandin synthesis.


Assuntos
Proliferação de Células/fisiologia , Ciclo-Oxigenase 2/metabolismo , Animais , Proliferação de Células/genética , Cromatografia Líquida , Ciclo-Oxigenase 2/genética , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Células HEK293 , Humanos , Immunoblotting , Imunoprecipitação , Camundongos , Camundongos Transgênicos , Proteólise , Espectrometria de Massas em Tandem
3.
Mol Metab ; 39: 101003, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32339771

RESUMO

OBJECTIVE: Statins are a group of medications that reduce cholesterol synthesis by inhibiting the activity of HMG-CoA reductase, a key enzyme in the mevalonate pathway. The clinical use of statins to lower excess cholesterol levels has revolutionized the cardiovascular field and increased the survival of millions, but some patients have adverse side effects. A growing body of data suggests that some of the beneficial and adverse effects of statins, including their anti-inflammatory, anti-tumorigenic, and myopathic activities, are cholesterol-independent. However, the underlying mechanisms for these effects of statins are not well defined. METHODS: Because Caenorhabditis elegans (C. elegans) lacks the cholesterol synthesis branch of the mevalonate pathway, this organism is a powerful system to unveil the cholesterol-independent effects of statins. We used genetic and biochemical approaches in C. elegans and cultured macrophage-derived murine cells to study the cellular response to statins. RESULTS: We found that statins activate a conserved p38-MAPK (p38) cascade and that the protein geranylgeranylation branch of the mevalonate pathway links the effect of statins to the activation of this p38 pathway. We propose that the blockade of geranylgeranylation impairs the function of specific small GTPases we identified as upstream regulators of the p38 pathway. Statin-mediated p38 activation in C. elegans results in the regulation of programs of innate immunity, stress, and metabolism. In agreement with this regulation, knockout of the p38 pathway results in the hypersensitivity of C. elegans to statins. Treating cultured mammalian cells with clinical doses of statins results in the activation of the same p38 pathway, which upregulates the COX-2 protein, a major regulator of innate immunity in mammals. CONCLUSIONS: Statins activate an evolutionarily conserved p38 pathway to regulate metabolism and innate immunity. Our results highlight the cytoprotective role of p38 activation under statin treatment in vivo and propose that this activation underlies many of the critical cholesterol-independent effects of statins.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Colesterol/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Animais , Biomarcadores , Expressão Gênica , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Imunidade Inata , Macrófagos/imunologia , Macrófagos/metabolismo , Ácido Mevalônico/metabolismo , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Fosforilação , Estresse Fisiológico , Transcriptoma , Resposta a Proteínas não Dobradas , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
4.
Neoplasia ; 19(3): 175-184, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28147305

RESUMO

Heparanase activity is highly implicated in cellular invasion and tumor metastasis, a consequence of cleavage of heparan sulfate and remodeling of the extracellular matrix underlying epithelial and endothelial cells. Heparanase expression is rare in normal epithelia, but is often induced in tumors, associated with increased tumor metastasis and poor prognosis. In addition, heparanase induction promotes tumor growth, but the molecular mechanism that underlines tumor expansion by heparanase is still incompletely understood. Here, we provide evidence that heparanase down regulates the expression of p21 (WAF1/CIP1), a cyclin-dependent kinase inhibitor that attenuates the cell cycle. Notably, a reciprocal effect was noted for PG545, a potent heparanase inhibitor. This compound efficiently reduced cell proliferation, colony formation, and tumor xenograft growth, associating with a marked increase in p21 expression. Utilizing the APC Min+/- mouse model, we show that heparanase expression and activity are increased in small bowel polyps, whereas polyp initiation and growth were significantly inhibited by PG545, again accompanied by a prominent induction of p21 levels. Down-regulation of p21 expression adds a novel feature for the emerging pro-tumorigenic properties of heparanase, while the potent p21 induction and anti-tumor effect of PG545 lends optimism that it would prove an efficacious therapeutic in colon carcinoma patients.


Assuntos
Transformação Celular Neoplásica/genética , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Inibidor de Quinase Dependente de Ciclina p21/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Saponinas/farmacologia , Animais , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/metabolismo , Neoplasias do Colo/metabolismo , Pólipos do Colo/genética , Pólipos do Colo/metabolismo , Pólipos do Colo/patologia , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Ativação Enzimática , Glucuronidase/antagonistas & inibidores , Glucuronidase/metabolismo , Humanos , Camundongos , Camundongos Knockout , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptores Toll-Like/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Psychoneuroendocrinology ; 39: 121-131, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24275011

RESUMO

Oxytocin is a nine amino acid neuropeptide that is known to play a critical role in fetal expulsion and breast-feeding, and has been recently implicated in mammalian social behavior. The actions of both central and peripheral oxytocin are mediated through the oxytocin receptor (Oxtr), which is encoded by a single gene. In contrast to the highly conserved expression of oxytocin in specific hypothalamic nuclei, the expression of its receptor in the brain is highly diverse among different mammalian species or even within individuals of the same species. The diversity in the pattern of brain Oxtr expression among mammals is thought to contribute to the broad range of social systems and organizations. Yet, the mechanisms underlying this diversity are poorly understood. DNA methylation is a major epigenetic mechanism that regulates gene transcription, and has been linked to reduced expression levels of the Oxtr in individuals with autism. Here we hypothesize that DNA methylation is involved in the expression regulation of Oxtr in the mouse brain. By combining bisulfite DNA conversion and Next-Generation Sequencing we found that specific CpG sites are differentially methylated between distinct brain regions expressing different levels of Oxtr mRNA. Some of these CpG sites are located within putative binding sites of transcription factors known to regulate Oxtr expression, including estrogen receptor α (ERα) and SP1. Specifically, methylation of the SP1 site was found to positively correlate with Oxtr expression. Furthermore, we revealed that the methylation levels of these sites in the various brain regions predict the relationship between ERα and Oxtr mRNA levels. Collectively, our results suggest that brain region-specific expression of the mouse Oxtr gene is epigenetically regulated by DNA methylation of its promoter.


Assuntos
Encéfalo/metabolismo , Metilação de DNA , Regulação da Expressão Gênica , Regiões Promotoras Genéticas , Receptores de Ocitocina/genética , Animais , Epigênese Genética , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Masculino , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Ocitocina/metabolismo
6.
PLoS One ; 8(2): e56869, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23441222

RESUMO

Oxytocin is a peptide hormone, well known for its role in labor and suckling, and most recently for its involvement in mammalian social behavior. All central and peripheral actions of oxytocin are mediated through the oxytocin receptor, which is the product of a single gene. Transcription of the oxytocin receptor is subject to regulation by gonadal steroid hormones, and is profoundly elevated in the uterus and mammary glands during parturition. DNA methylation is a major epigenetic mechanism that regulates gene transcription, and has been linked to reduced expression of the oxytocin receptor in individuals with autism. Here, we hypothesized that transcription of the mouse oxytocin receptor is regulated by DNA methylation of specific sites in its promoter, in a tissue-specific manner. Hypothalamus-derived GT1-7, and mammary-derived 4T1 murine cell lines displayed negative correlations between oxytocin receptor transcription and methylation of the gene promoter, and demethylation caused a significant enhancement of oxytocin receptor transcription in 4T1 cells. Using a reporter gene assay, we showed that methylation of specific sites in the gene promoter, including an estrogen response element, significantly inhibits transcription. Furthermore, methylation of the oxytocin receptor promoter was found to be differentially correlated with oxytocin receptor expression in mammary glands and the uterus of virgin and post-partum mice, suggesting that it plays a distinct role in oxytocin receptor transcription among tissues and under different physiological conditions. Together, these results support the hypothesis that the expression of the mouse oxytocin receptor gene is epigenetically regulated by DNA methylation of its promoter.


Assuntos
Ilhas de CpG , Metilação de DNA , Regiões Promotoras Genéticas , Receptores de Ocitocina/genética , Transcrição Gênica , Animais , Sequência de Bases , Linhagem Celular , Epigênese Genética , Feminino , Regulação da Expressão Gênica , Ordem dos Genes , Genes Reporter , Camundongos , Dados de Sequência Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
7.
Behav Brain Res ; 240: 26-8, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23174211

RESUMO

Chronic infusion of mice with a ß2 adrenergic receptor (ß2AR) analog was shown to cause long-term DNA damage in a pathway which involves ß Arresin-1-mediated activation of Mdm2 and subsequent degradation of the tumor suppressor protein p53. The objective of the present study was to test whether a single acute stress, which manifests long lasting changes in behavior, affects the interaction of Mdm2 with p53, ß2AR, and ß Arrestin-1 in the dorsal and ventral hippocampal CA1. Adult rats were subject to underwater trauma, a brief forceful submersion under water and tested a month later for behavioral and biochemical changes. Elevated plus maze tests confirmed that animals that experienced the threat of drowning present heightened levels of anxiety one month after trauma. An examination of the CA1 hippocampal areas of the same rats showed that underwater trauma caused a significant increase in the association of Mdm2 with ß2AR, ß Arrestin-1, and p53 in the ventral but not dorsal CA1. Our results provide support for the idea that stress-related events may result in biochemical changes restricted to the ventral 'emotion-related' parts of the hippocampus.


Assuntos
Arrestinas/metabolismo , Região CA1 Hipocampal/metabolismo , Afogamento Iminente/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Estresse Psicológico/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Ansiedade/metabolismo , Comportamento Animal , Afogamento Iminente/psicologia , Ratos , Estresse Psicológico/psicologia , beta-Arrestina 1 , beta-Arrestinas
8.
J Biol Chem ; 287(21): 17214-17223, 2012 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-22474323

RESUMO

The enzyme cyclooxygenase-2 (COX-2) is rapidly and transiently up-regulated by a large variety of signals and implicated in pathologies such as inflammation and tumorigenesis. Although many signals cause COX-2 up-regulation, much less is known about mechanisms that actively down-regulate its expression. Here we show that the G protein-coupled receptor prostaglandin E(1) (EP(1)) reduces the expression of COX-2 in a concentration-dependent manner through a mechanism that does not require receptor activation. The reduction in COX-2 protein is not due to decreased protein synthesis and occurs because of enhancement of substrate-independent COX-2 proteolysis. Although EP(1) does not interfere with the entry of COX-2 into the endoplasmic reticulum-associated degradation cascade, it facilitates COX-2 ubiquitination through complex formation. Blockade of proteasomal activity results in degradation of the receptor and concomitant recovery in the expression of COX-2, suggesting that EP(1) may scaffold an unknown E3 ligase that ubiquitinates COX-2. These findings propose a new role for the EP(1) receptor in resolving inflammation through down-regulation of COX-2.


Assuntos
Ciclo-Oxigenase 2/biossíntese , Regulação para Baixo , Regulação Enzimológica da Expressão Gênica , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Receptores de Prostaglandina E Subtipo EP1/metabolismo , Linhagem Celular Tumoral , Ciclo-Oxigenase 2/genética , Relação Dose-Resposta a Droga , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Prostaglandinas E/metabolismo , Prostaglandinas E/farmacologia , Complexo de Endopeptidases do Proteassoma/genética , Receptores de Prostaglandina E Subtipo EP1/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/genética
9.
J Clin Invest ; 117(9): 2445-58, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17786238

RESUMO

Deleterious effects on the heart from chronic stimulation of beta-adrenergic receptors (betaARs), members of the 7 transmembrane receptor family, have classically been shown to result from Gs-dependent adenylyl cyclase activation. Here, we identify a new signaling mechanism using both in vitro and in vivo systems whereby beta-arrestins mediate beta1AR signaling to the EGFR. This beta-arrestin-dependent transactivation of the EGFR, which is independent of G protein activation, requires the G protein-coupled receptor kinases 5 and 6. In mice undergoing chronic sympathetic stimulation, this novel signaling pathway is shown to promote activation of cardioprotective pathways that counteract the effects of catecholamine toxicity. These findings suggest that drugs that act as classical antagonists for G protein signaling, but also stimulate signaling via beta-arrestin-mediated cytoprotective pathways, would represent a novel class of agents that could be developed for multiple members of the 7 transmembrane receptor family.


Assuntos
Arrestinas/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Coração/efeitos dos fármacos , Miocárdio/metabolismo , Receptores Adrenérgicos beta 1/metabolismo , Ativação Transcricional/genética , Animais , Linhagem Celular , Humanos , Camundongos , Camundongos Transgênicos , Mutação/genética , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , beta-Arrestinas
10.
Eur J Pharmacol ; 543(1-3): 8-13, 2006 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-16842773

RESUMO

Prostaglandins are known to transduce their signals via 7 transmembrane prostanoid receptors, which typically signal through coupling to G proteins and downstream second messenger molecules and protein kinase activation. Recently we have shown that cyclic nucleotides affect prostaglandins binding to bovine aortic endothelial cells independent of protein kinases. Here we show that incubation of bovine aortic endothelial cells with permeable analogs of cAMP or cGMP leads to a rapid and reversible reduction in PGE(2) binding to the cells. Since cyclic nucleotides are known modulators of cyclic nucleotide gated channels, we examined the effect of a specific cyclic nucleotide gated channel blocker l-cis-diltiazem on prostaglandin E(2) (PGE(2)) binding to bovine aortic endothelial cells. L-cis-diltiazem is shown to displace PGE(2) binding to bovine aortic endothelial cells in a dose dependent manner. In addition the effect of PGE(2) and l-cis-diltiazem on thapsigargin induced calcium elevation in the cells was compared. Both agents reduced in bovine aortic endothelial cells the thapsigargin induced calcium elevation by about half. PGE(2) also retarded the time course of the response to thapsigargin. Simultaneous treatment of the cells with both PGE(2) and l-cis-diltiazem did not yield an inhibitory effect beyond that observed with l-cis-diltiazem alone. Together our data point at the cyclic nucleotide gated channels as a feasible candidate for association with the PGE(2) binding site in bovine aortic endothelial cells.


Assuntos
Aorta/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Diltiazem/farmacologia , Dinoprostona/metabolismo , Células Endoteliais/metabolismo , Canais Iônicos/metabolismo , Nucleotídeos Cíclicos/metabolismo , Animais , Aorta/efeitos dos fármacos , Ligação Competitiva , Bloqueadores dos Canais de Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , ATPases Transportadoras de Cálcio/antagonistas & inibidores , ATPases Transportadoras de Cálcio/metabolismo , Bovinos , Células Cultivadas , AMP Cíclico/análogos & derivados , AMP Cíclico/metabolismo , AMP Cíclico/farmacologia , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , GMP Cíclico/farmacologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos , Diltiazem/metabolismo , Dinoprostona/farmacologia , Células Endoteliais/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Canais Iônicos/efeitos dos fármacos , Nucleotídeos Cíclicos/farmacologia , Tapsigargina/farmacologia
11.
Mol Endocrinol ; 18(11): 2727-39, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15272055

RESUMO

Diverse extracellular stimuli activate the ERK1/2 MAPK cascade by transactivating epidermal growth factor (EGF) receptors. Here, we have examined the role of EGF receptors in IGF-I-stimulated ERK1/2 activation in several cultured cell lines. In human embryonic kidney 293 cells, IGF-I triggered proteolysis of heparin binding (HB)-EGF, increased tyrosine autophosphorylation of EGF receptors, stimulated EGF receptor inhibitor (AG1478)-sensitive ERK1/2 phosphorylation, and promoted EGF receptor endocytosis. In a mixed culture system that employed IGF-I receptor null murine embryo fibroblasts (MEFs) (R(-) cells) to detect paracrine signals produced by MEFs expressing the human IGF-I receptor (R(+) cells), stimulation of R(+) cells provoked rapid activation of green fluorescent protein-tagged ERK2 in cocultured R(-) cells. The R(-) cell response was abolished by either the broad-spectrum matrix metalloprotease inhibitor batimastat or by AG1478, indicating that it resulted from the proteolytic generation of an EGF receptor ligand from adjacent R(+) cells. These data suggest that the paracrine production of EGF receptor ligands leading to EGF receptor transactivation is a general property of IGF-I receptor signaling. In contrast, the contribution of transactivated EGF receptors to IGF-I-stimulated downstream events, such as ERK1/2 activation, varies in a cell type-dependent manner.


Assuntos
Receptores ErbB/fisiologia , Fator de Crescimento Insulin-Like I/fisiologia , Comunicação Parácrina , Fenilalanina/análogos & derivados , Animais , Linhagem Celular , Chlorocebus aethiops , Endocitose/fisiologia , Receptores ErbB/análise , Receptores ErbB/metabolismo , Humanos , Fator de Crescimento Insulin-Like I/farmacologia , Metaloendopeptidases/antagonistas & inibidores , Camundongos , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fenilalanina/farmacologia , Fosforilação/efeitos dos fármacos , Quinazolinas , Ratos , Receptores de Somatomedina/efeitos dos fármacos , Acetato de Tetradecanoilforbol/farmacologia , Tiofenos/farmacologia , Tirosina/metabolismo , Tirfostinas/farmacologia
12.
J Biol Chem ; 278(37): 35403-11, 2003 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-12821660

RESUMO

Agonist-induced phosphorylation of beta-adrenergic receptors (beta ARs) by G protein-coupled receptor kinases (GRKs) results in their desensitization followed by internalization. Whether protein kinase A (PKA)-mediated phosphorylation of beta ARs, particularly the beta 1AR subtype, can also trigger internalization is currently not known. To test this, we cloned the mouse wild type beta 1AR (WT beta 1AR) and created 3 mutants lacking, respectively: the putative PKA phosphorylation sites (PKA-beta 1AR), the putative GRK phosphorylation sites (GRK-beta 1AR), and both sets of phosphorylation sites (PKA-/GRK-beta 1AR). Following agonist stimulation, both PKA-beta 1AR and GRK-beta 1AR mutants showed comparable increases in phosphorylation and desensitization. Saturating concentrations of agonist induced only 50% internalization of either mutant compared with wild type, suggesting that both PKA and GRK phosphorylation of the receptor contributed to receptor sequestration in an additive manner. Moreover, in contrast to the WT beta 1AR and PKA-beta 1AR, sequestration of the GRK-beta 1AR and PKA-/GRK-beta 1AR was independent of beta-arrestin recruitment. Importantly, clathrin inhibitors abolished agonist-dependent internalization for both the WT beta 1AR and PKA-beta 1AR, whereas caveolae inhibitors prevented internalization only of the GRK-beta 1AR mutant. Taken together, these data demonstrate that: 1) PKA-mediated phosphorylation can trigger agonist-induced internalization of the beta 1AR and 2) the pathway selected for beta 1AR internalization is primarily determined by the kinase that phosphorylates the receptor, i.e. PKA-mediated phosphorylation directs internalization via a caveolae pathway, whereas GRK-mediated phosphorylation directs it through clathrin-coated pits.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Endocitose/fisiologia , Proteínas de Ligação ao GTP/fisiologia , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Adrenérgicos beta 1/fisiologia , Animais , Sítios de Ligação , Linhagem Celular , Clonagem Molecular , Dobutamina/farmacologia , Humanos , Camundongos , Modelos Moleculares , Fosforilação , Estrutura Secundária de Proteína , Receptores Adrenérgicos beta 1/química , Receptores Adrenérgicos beta 2/efeitos dos fármacos , Receptores Adrenérgicos beta 2/fisiologia , Proteínas Recombinantes/metabolismo , Deleção de Sequência , Transfecção
13.
Biochem J ; 371(Pt 2): 581-7, 2003 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-12534343

RESUMO

Stimulation of endogenous kinin receptors promotes growth of androgen-independent prostate cancer PC3 cells via activation of the mitogenic extracellular-signal-regulated kinase (ERK) pathway. In the present study, we show that kinin-mediated mitogenic signalling and prostate-cell growth involves two subtypes of bradykinin (BK) receptors, B1R and B2R. Specific stimulation of either B1R or B2R by their respective agonists des-Arg(9)-BK and Lys-BK promoted ERK activation and cell growth, whereas selective blockade with specific antagonists des-Arg(9)-[Leu(8)]BK and Hoe 140 respectively obliterated this effect, indicating the presence of both receptor subtypes. However, blockade of B1R also inhibited B2R-mediated ERK activation and cell growth, and, similarly, antagonism of B2R inhibited the B1R-mediated response. Furthermore, both B1R and B2R agonists promoted internalization of B1R, whereas both receptor antagonists blocked this effect. The B1R ligands des-Arg(9)-BK and des-Arg(9)-[Leu(8)]BK had no effect on the binding of BK to B2R, as demonstrated by radioligand competitive binding studies. However, blockade of either B1R or B2R impaired the ability of the reciprocal receptor to produce inositol phosphates, suggesting that the interaction between B1R and B2R is proximal to activation of phospholipase C. These results provide evidence for the existence of B1R-B2R complexes in prostate cancer PC3 cells and demonstrate that antagonism of one receptor interferes with the signalling ability of the other, possibly at the level of receptor-Galpha(q) protein coupling. Selective inhibition of B1R, which is up-regulated in injured and cancerous tissue, may be beneficial for the treatment of advanced prostate cancer.


Assuntos
Androgênios/farmacologia , Divisão Celular/fisiologia , Receptor Cross-Talk/fisiologia , Receptores da Bradicinina/fisiologia , Animais , Neoplasias Ósseas/secundário , Células COS , Divisão Celular/efeitos dos fármacos , Chlorocebus aethiops , Humanos , Cinética , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/fisiopatologia , Receptor B1 da Bradicinina , Receptor B2 da Bradicinina , Receptores da Bradicinina/genética , Proteínas Recombinantes/metabolismo , Transfecção , Células Tumorais Cultivadas
14.
J Urol ; 167(3): 1458-63, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11832770

RESUMO

PURPOSE: Androgens are the primary growth promoters of the prostate gland and yet prostate tumors progress despite androgen ablation. This progression suggests a role for additional cellular factors in the progression to androgen independent disease. We examined the role of a family of extracellular signal regulators, namely the guanosine phosphate binding (G) protein coupled receptor (GPCR) family, in prostate cancer. MATERIALS AND METHODS: A comprehensive review of the literature was performed on GPCRs and prostate cancer, and supplemented with published and unpublished observations made at our laboratory. Emphasis was placed on the mechanistic aspects of mitogenic signaling pathways involved to identify potential targets for therapy. RESULTS: Expression of some GPCRs and GPCR ligands is elevated in prostate cancer cells and adjacent prostatic stromal tissue. In vitro studies demonstrate that activation of GPCRs confers a distinct growth and survival advantage on prostate cancer cells, including enhanced proliferation and decreased programmed cell death (apoptosis). Specifically stimulation of GPCRs for lysophosphatidic acid and bradykinin induces proliferation of androgen independent prostate cancer cells via the activation of the extracellular signal regulated kinase (ERK) pathway. Induction of ERK by the bradykinin and lysophosphatidic acid in prostate cells proceeds via distinct pathways and involves Galphaq and Gbetagamma subunits, respectively. The Gbetagamma dependent activation of ERK requires tyrosine kinases, including epidermal growth factor receptor and c-Src. Furthermore, stimulation with LPA enhances the survival of prostate cancer cells via activation of the inducible transcription factor nuclear factor-kappaB. CONCLUSIONS: GPCR stimulation induces proliferation and prevents apoptosis of hormone independent prostate cancer cells, indicating their important role in the progression of prostate cancer. While further confirmatory studies are required to verify the role of GPCRs in disease progression, the therapeutic implications of these studies may enhance the armamentarium in the fight against prostate cancer.


Assuntos
Proteínas de Ligação ao GTP/fisiologia , Neoplasias da Próstata/fisiopatologia , Apoptose/fisiologia , Divisão Celular/fisiologia , Progressão da Doença , Proteínas de Ligação ao GTP/metabolismo , Expressão Gênica , Humanos , Imuno-Histoquímica , Masculino , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Receptores Androgênicos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA