Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Virol ; 98(2): e0174223, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38193694

RESUMO

The HIV-1 Envelope (Env) protein cytoplasmic tail (CT) recently has been shown to assemble an unusual trimeric baseplate structure that locates beneath Env ectodomain trimers. Mutations at linchpin residues that help organize the baseplate impair virus replication in restrictive T cell lines but not in permissive cell lines. We have identified and characterized a second site suppressor of these baseplate mutations, located at residue 34 in the viral matrix (MA) protein, that rescues viral replication in restrictive cells. The suppressor mutation was dependent on the CT to exert its activity and did not appear to affect Env protein traffic or fusion functions in restrictive cells. Instead, the suppressor mutation increased Env incorporation into virions 3-fold and virus infectivity in single-round infections 10-fold. We also found that a previously described suppressor of Env-incorporation defects that stabilizes the formation of MA trimers was ineffective at rescuing Env baseplate mutations. Our results support an interpretation in which changes at MA residue 34 induce conformational changes that stabilize MA lattice trimer-trimer interactions and/or direct MA-CT associations.IMPORTANCEHow HIV-1 Env trimers assemble into virus particles remains incompletely understood. In restrictive cells, viral incorporation of Env is dependent on the Env CT and on the MA protein, which assembles lattices composed of hexamers of trimers in immature and mature viruses. Recent evidence indicates that CT assembles trimeric baseplate structures that require membrane-proximal residues to interface with trimeric transmembrane domains and C-terminal helices in the CT. We found that mutations of these membrane-proximal residues impaired replication in restrictive cells. This defect was countered by a MA mutation that does not localize to any obvious interprotein regions but was only inefficiently suppressed by a MA mutation that stabilizes MA trimers and has been shown to suppress other CT-dependent Env defects. Our results suggest that efficient suppression of baseplate mutations involves stabilization of MA inter-trimer contacts and/or direct MA-CT associations. These observations shed new light on how Env assembles into virions.


Assuntos
Produtos do Gene env , HIV-1 , Produtos do Gene env do Vírus da Imunodeficiência Humana , Antígenos Virais/genética , Linhagem Celular , Produtos do Gene env/química , Produtos do Gene env/genética , HIV-1/fisiologia , Mutação , Domínios Proteicos , Proteínas da Matriz Viral/metabolismo , Replicação Viral/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética
2.
J Biol Chem ; 296: 100340, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33515546

RESUMO

The lipid composition of HIV-1 virions is enriched in sphingomyelin (SM), but the roles that SM or other sphingolipids (SLs) might play in the HIV-1 replication pathway have not been elucidated. In human cells, SL levels are regulated by ceramide synthase (CerS) enzymes that produce ceramides, which can be converted to SMs, hexosylceramides, and other SLs. In many cell types, CerS2, which catalyzes the synthesis of very long chain ceramides, is the major CerS. We have examined how CerS2 deficiency affects the assembly and infectivity of HIV-1. As expected, we observed that very long chain ceramide, hexosylceramide, and SM were reduced in CerS2 knockout cells. CerS2 deficiency did not affect HIV-1 assembly or the incorporation of the HIV-1 envelope (Env) protein into virus particles, but it reduced the infectivites of viruses produced in the CerS2-deficient cells. The reduced viral infection levels were dependent on HIV-1 Env, since HIV-1 particles that were pseudotyped with the vesicular stomatitis virus glycoprotein did not exhibit reductions in infectivity. Moreover, cell-cell fusion assays demonstrated that the functional defect of HIV-1 Env in CerS2-deficient cells was independent of other viral proteins. Overall, our results indicate that the altered lipid composition of CerS2-deficient cells specifically inhibit the HIV-1 Env receptor binding and/or fusion processes.


Assuntos
Deleção de Genes , Infecções por HIV/genética , HIV-1/fisiologia , Proteínas de Membrana/genética , Esfingosina N-Aciltransferase/genética , Proteínas Supressoras de Tumor/genética , Ceramidas/genética , Ceramidas/metabolismo , Células HEK293 , Infecções por HIV/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Esfingosina N-Aciltransferase/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Internalização do Vírus
3.
J Mol Biol ; 431(19): 3706-3717, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31330153

RESUMO

Mutations of the Ras proteins HRAS, KRAS4A, KRAS4B, and NRAS are associated with a high percentage of all human cancers. The proteins are composed of highly homologous N-terminal catalytic or globular domains, plus C-terminal hypervariable regions (HVRs). Post-translational modifications of all RAS HVRs helps target RAS proteins to cellular membrane locations where they perform their signaling functions. For the predominant KRAS4 isoform, KRAS4B, post-translational farnesylation and carboxymethylation, along with a patch of HVR basic residues help foster membrane binding. Recent investigations implicate membrane-bound RAS dimers, oligomers, and nanoclusters as landing pads for effector proteins that relay RAS signals. The details of these RAS signaling platforms have not been elucidated completely, in part due to the difficulties in preparing modified proteins. We have employed properly farnesylated and carboxymethylated KRAS4B in lipid monolayer incubations to examine how the proteins assemble on membranes. Our results reveal novel insights into to how KRAS4B may organize on membranes.


Assuntos
Membrana Celular/metabolismo , Prenilação , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Sequência de Aminoácidos , Humanos , Imageamento Tridimensional , Metilação , Modelos Moleculares , Proteínas Proto-Oncogênicas p21(ras)/química
4.
Virology ; 518: 264-271, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29549788

RESUMO

The matrix (MA) domain of the HIV-1 precursor Gag protein (PrGag) has been shown interact with the HIV-1 envelope (Env) protein, and to direct PrGag proteins to plasma membrane (PM) assembly sites by virtue of its affinity to phosphatidylinositol-4,5-bisphosphate (PI[4,5]P2). Unexpectedly, HIV-1 viruses with large MA deletions (ΔMA) have been shown to be conditionally infectious as long as they are matched with Env truncation mutant proteins or alternative viral glycoproteins. To characterize the interactions of wild type (WT) and ΔMA Gag proteins with PI(4,5)P2 and other acidic phospholipids, we have employed a set of lipid biosensors as probes. Our investigations showed marked differences in WT and ΔMA Gag colocalization with biosensors, effects on biosensor release, and association of biosensors with virus-like particles. These results demonstrate an alternative approach to the analysis of viral protein-lipid associations, and provide new data as to the lipid compositions of HIV-1 assembly sites.


Assuntos
Produtos do Gene gag/metabolismo , HIV-1/fisiologia , Proteínas Mutantes/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Montagem de Vírus , Técnicas Biossensoriais , Produtos do Gene gag/genética , HIV-1/genética , Proteínas Mutantes/genética , Ligação Proteica , Deleção de Sequência
5.
Virology ; 417(1): 137-46, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21676426

RESUMO

Based on structural information, we have analyzed the mechanism of mature HIV-1 core assembly and the contributions of structural elements to the assembly process. Through the use of several in vitro assembly assay systems, we have examined details of how capsid (CA) protein helix 1, ß-hairpin and cyclophilin loop elements impact assembly-dependent protein interactions, and we present evidence for a contribution of CA helix 6 to the mature assembly-competent conformation of CA. Additional experiments with mixtures of proteins in assembly reactions provide novel analyses of the mature core assembly mechanism. Our results support a model in which initial assembly products serve as scaffolds for further assembly by converting incoming subunits to assembly proficient conformations, while mutant subunits increase the probability of assembly termination events.


Assuntos
HIV-1/genética , HIV-1/metabolismo , Proteínas do Vírus da Imunodeficiência Humana/metabolismo , Proteínas do Core Viral/metabolismo , Montagem de Vírus/fisiologia , Animais , Células Cultivadas , Regulação Viral da Expressão Gênica/fisiologia , Proteínas do Vírus da Imunodeficiência Humana/química , Proteínas do Vírus da Imunodeficiência Humana/genética , Imuno-Histoquímica , Camundongos , Microscopia Eletrônica , Modelos Moleculares , Mutação , Conformação Proteica , RNA Viral/genética , RNA Viral/metabolismo , Proteínas do Core Viral/química , Proteínas do Core Viral/genética
6.
J Mol Biol ; 387(2): 376-89, 2009 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-19356593

RESUMO

During the morphogenesis of mature human immunodeficiency virus-1 cores, viral capsid proteins assemble conical or tubular shells around viral ribonucleoprotein complexes. This assembly step is mimicked in vitro through reactions in which capsid proteins oligomerize to form long tubes, and this process can be modeled as consisting of a slow nucleation period, followed by a rapid phase of tube growth. We have developed a novel fluorescence microscopy approach to monitor in vitro assembly reactions and have employed it, along with electron microscopy analysis, to characterize the assembly process. Our results indicate that temperature, salt concentration, and pH changes have differential effects on tube nucleation and growth steps. We also demonstrate that assembly can be unidirectional or bidirectional, that growth can be capped, and that proteins can assemble onto the surfaces of tubes, yielding multiwalled or nested structures. Finally, experiments show that a peptide inhibitor of in vitro assembly also can dismantle preexisting tubes, suggesting that such reagents may possess antiviral effects against both viral assembly and uncoating. Our investigations help establish a basis for understanding the mechanism of mature human immunodeficiency virus-1 core assembly and avenues for antiviral inhibition.


Assuntos
Capsídeo/metabolismo , HIV-1/fisiologia , Montagem de Vírus , Anticorpos/farmacologia , Capsídeo/ultraestrutura , HIV-1/efeitos dos fármacos , HIV-1/ultraestrutura , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Microscopia Eletrônica , Microscopia de Fluorescência , Peptídeos/farmacologia , Cloreto de Sódio/farmacologia , Temperatura , Proteínas Virais/química , Proteínas Virais/metabolismo , Montagem de Vírus/efeitos dos fármacos
7.
J Biol Chem ; 280(18): 17664-70, 2005 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-15734744

RESUMO

To investigate the mechanism by which human immunodeficiency virus (HIV) precursor Gag (PrGag) proteins assemble to form immature virus particles, we examined the in vitro assembly of MACANC proteins, composed of the PrGag matrix, capsid, and nucleocapsid domains. In the absence of other components, MACANC proteins assembled efficiently at physiological temperature but inefficiently at lower temperatures. However, the addition of RNA reduced the temperature sensitivity of assembly reactions. Assembly of MACANC proteins also was affected by pH because the proteins preferentially formed tubes at pH 6.0, whereas spheres were obtained at pH 8.0. Because neither tubes nor spheres were amenable to analysis of protein-protein contacts, we also examined the membrane-bound assemblies of MACANC proteins. Interestingly, MACANC proteins organized on membranes in tightly packed hexameric rings. The observed hexamer spacing of 79.7 A is consistent with the notion that more PrGag proteins assemble into virions than are needed to provide capsid proteins for mature virus cores. Our data are also consistent with a model for PrGag contacts in immature virions where capsid hexamers are tightly packed, where nucleocapsid domains align beneath capsid C-terminal domains, and where matrix domains form trimers at the nexus of three neighbor hexamers.


Assuntos
Produtos do Gene gag/química , Produtos do Gene gag/metabolismo , HIV-1/química , HIV-1/fisiologia , Precursores de Proteínas/química , Precursores de Proteínas/metabolismo , Montagem de Vírus , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA