Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Breast Cancer Res Treat ; 150(2): 347-61, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25773930

RESUMO

The gene for Pregnancy Up-regulated Non-ubiquitous Calmodulin Kinase (Pnck), a novel calmodulin kinase, is expressed in roughly one-third of human breast tumors, but not in adjoining normal tissues. Pnck alters EGFR stability and function, prompting this study to determine if Pnck expression has implications for HER-2 function and HER-2-directed therapy. The frequency of Pnck expression in HER-2-amplified breast cancer was examined by immunohistochemistry, and the impact of Pnck expression in the presence of HER-2 amplification on cancer cell proliferation, clonogenicity, cell-cycle progression, and Trastuzumab sensitivity was examined in vitro by transfection of cells with Pnck. Cell signaling was probed by Western blot analysis and shRNA-mediated PTEN knockdown. Over 30 % of HER-2 amplified tumors were found to express Pnck. Expression of Pnck in SkBr3 cells resulted in increased proliferation, clonal growth, cell-cycle progression, and Trastuzumab resistance. Pnck expression increases Hsp27 expression, Trastuzumab partial agonist activity on HER-2 Y1248 phosphorylation, and suppressed extracellular signal-regulated kinase (ERK1/2) activity. Knockdown of endogenous PTEN upregulated ERK1/2 activity, inhibited cellular proliferation, and partially sensitized Pnck/SKBr3 cells to Trastuzumab treatment. Increased proliferation of the Pnck/SKBr3 cells was observed following expression of protein phosphatase active and lipid phosphatase dead PTEN mutant but not the total phosphatase dead PTEN mutant. Co-overexpression of HER-2 and Pnck results in enhanced tumor cell proliferation and Trastuzumab resistance that is paradoxically dependent on PTEN protein phosphatase activity. This suggests that Pnck may be a marker of Trastuzumab resistance and possibly a therapeutic target.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/metabolismo , PTEN Fosfo-Hidrolase/fisiologia , Receptor ErbB-2/genética , Trastuzumab/farmacologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/tratamento farmacológico , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/genética , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Resistencia a Medicamentos Antineoplásicos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Amplificação de Genes , Expressão Gênica , Humanos , Neuregulina-1/fisiologia , Pontos de Checagem da Fase S do Ciclo Celular
2.
Cell Cycle ; 13(6): 961-73, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24552815

RESUMO

Pregnancy upregulated non-ubiquitous calmodulin kinase (Pnck), a novel calmodulin kinase, is significantly overexpressed in breast and renal cancers. We present evidence that at high cell density, overexpression of Pnck in HEK 293 cells inhibits serum-induced extracellular signal-regulated kinase (ERK1/ERK2) activation. ERK1/2 inhibition is calcium-dependent and Pnck kinase activity is required for ERK1/2 inhibition, since expression of a kinase-dead (K44A) and a catalytic loop phosphorylation mutant (T171A) Pnck protein is unable to inhibit ERK1/2 activity. Ras is constitutively active at high cell density, and Pnck does not alter Ras activation, suggesting that Pnck inhibition of ERK1/2 activity is independent of Ras activity. Pnck inhibition of serum-induced ERK1/2 activity is lost in cells in which phosphatase and tensin homolog (PTEN) is suppressed, suggesting that Pnck inhibition of ERK1/2 activity is mediated by PTEN. Overexpression of protein phosphatase-active but lipid phosphatase-dead PTEN protein inhibits ERK1/2 activity in control cells and enhances Pnck-mediated ERK1/2 inhibition, suggesting that Pnck increases availability of protein phosphatase active PTEN for ERK1/2 inhibition. Pnck is a stress-responsive kinase; however, serum-induced p38 MAP kinase activity is also downregulated by Pnck in a Pnck kinase- and PTEN-dependent manner, similar to ERK1/2 inhibition. Pnck overexpression increases proliferation, which is inhibited by PTEN knockdown, implying that PTEN acts as a paradoxical promoter of proliferation in ERK1/2 and p38 MAP kinase phosphorylation-inhibited, Pnck-overexpressing cells. Overall, these data reveal a novel function of Pnck in the regulation of ERK1/2 and p38 MAP kinase activity and cell proliferation, which is mediated by paradoxical PTEN functions. The possible biological implications of these data are discussed.


Assuntos
Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/genética , Proliferação de Células , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Anisomicina/farmacologia , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/metabolismo , Linhagem Celular , Ativação Enzimática , Ativadores de Enzimas/farmacologia , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Humanos , Imidazóis/farmacologia , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Fosforilação , Piridinas/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas ras/metabolismo
3.
Am J Pathol ; 183(4): 1306-17, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24070417

RESUMO

Membrane-associated serine protease matriptase is widely expressed by epithelial/carcinoma cells in which its proteolytic activity is tightly controlled by the Kunitz-type protease inhibitor, hepatocyte growth factor activator inhibitor (HAI-1). We demonstrate that, although matriptase is not expressed in lymphoid hyperplasia, roughly half of the non-Hodgkin B-cell lymphomas analyzed express significant amounts of matriptase. Furthermore, a significant proportion of these tumors express matriptase in the absence of HAI-1. Aggressive Burkitt lymphoma was more likely than indolent follicular lymphoma to express matriptase alone (86% versus 36%). In the absence of significant HAI-1 expression, the lymphoma cells activate and shed active matriptase when the cells are stimulated with mildly acidic buffer or the hypoxia-mimicking agent, CoCl2. The shed active matriptase can initiate pericellular proteolytic cascades by activating urokinase-type plasminogen activator on the cell surface of monocytes, and it can activate prohepatocyte growth factor. In addition, matriptase knockdown suppressed proliferation and colony-forming ability of neoplastic B cells in culture and growth as tumor xenografts in mice. Furthermore, exogenous expression of HAI-1 significantly suppressed proliferation of neoplastic B cells. These studies suggest that dysregulated pericellular proteolysis as a result of unregulated matriptase expression with limited HAI-1 may contribute to the pathological characteristics of several human B-cell lymphomas through modulation of the tumor microenvironment and enhanced tumor growth.


Assuntos
Linfoma de Células B/enzimologia , Linfoma de Células B/patologia , Proteólise , Serina Endopeptidases/metabolismo , Animais , Linfócitos B/enzimologia , Linfócitos B/patologia , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Linfonodos/enzimologia , Linfonodos/patologia , Camundongos , Camundongos SCID , Proteínas Secretadas Inibidoras de Proteinases/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Am J Physiol Cell Physiol ; 300(5): C1139-54, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21325639

RESUMO

We have recently described a novel role for pregnancy-upregulated non-ubiquitous calmodulin kinase (Pnck) in the induction of ligand-independent epidermal growth factor receptor (EGFR) degradation (Deb TB, Coticchia CM, Barndt R, Zuo H, Dickson RB, and Johnson MD. Am J Physiol Cell Physiol 295: C365-C377, 2008). In the current communication, we explore the probable mechanism by which Pnck induces ligand-independent EGFR degradation. Pnck-induced EGFR degradation is calcium/calmodulin independent and is regulated by cell density, with the highest EGFR degradation observed at low cell density. Pnck is a novel heat shock protein 90 (Hsp90) client protein that can be co-immunoprecipitated with Hsp90. Treatment of Pnck-overexpressing cells with the pharmacologic Hsp90 inhibitor geldanamycin results in enhanced EGFR degradation, and destruction of Pnck. In cells in which Pnck is inducing EGFR degradation, we observed that Hsp90 exhibits reduced electrophoretic mobility, and through mass spectrometric analysis of immunopurified Hsp90 protein we demonstrated enhanced phosphorylation at threonine 89 and 616 (in both Hsp90-α and -ß) and serine 391 (in Hsp90-α). Kinase-active Pnck protein is degraded by the proteasome, concurrent with EGFR degradation. A Pnck mutant (T171A) protein with suppressed kinase activity induced EGFR degradation to essentially the same level as wild-type (WT) Pnck, suggesting that Pnck kinase activity is not required for the induction of EGFR degradation. Although EGFR is degraded, overexpression of WT Pnck paradoxically promoted cellular proliferation, whereas cells expressing mutant Pnck (T171A) were growth inhibited. WT Pnck promoted S to G(2) transition, but cells expressing the mutant exhibited higher residency time in S phase. Basal MAP kinase activity was inhibited by WT Pnck but not by mutant T171A Pnck protein. Cyclin-dependent kinase (Cdk) inhibitor p21/Cip-1/Waf-1 was transcriptionally suppressed downstream to MAP kinase inhibition by WT Pnck, but not the mutant protein. Collectively, these data suggest that 1) Pnck induces ligand-independent EGFR degradation most likely through perturbation of Hsp90 chaperone activity due to Hsp90 phosphorylation, 2) EGFR degradation is coupled to proteasomal degradation of Pnck, and 3) modulation of basal MAP kinase activity, p21/Cip-1/Waf-1 expression, and cellular growth by Pnck is independent of Pnck-induced ligand-independent EGFR degradation.


Assuntos
Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/metabolismo , Receptores ErbB/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Benzoquinonas/farmacologia , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/genética , Proliferação de Células/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidores Enzimáticos/farmacologia , Células HEK293 , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Humanos , Lactamas Macrocíclicas/farmacologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mutação , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Serina/metabolismo , Treonina/metabolismo
5.
Am J Physiol Cell Physiol ; 291(1): C40-9, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16467405

RESUMO

Matriptase and its cognate inhibitor, hepatocyte growth factor activator inhibitor-1 (HAI-1), have been implicated in carcinoma onset and malignant progression. However, the pathological mechanisms of matriptase activation are not defined. Steroid sex hormones play crucial roles in prostate and breast cancer. Therefore, we investigated the questions of whether and how steroid sex hormones regulate matriptase activation in these cancer cells. Treatment of cells with 17beta-estradiol had no effect on activation of matriptase in hormone-starved breast cancer cells, in part due to their high constitutive level of activated matriptase. In striking contrast, very low levels of activated matriptase were detected in hormone-starved lymph node prostatic adenocarcinoma (LNCaP) cells. Robust activation of matriptase was observed as early as 6 h after exposure of these cells to 5alpha-dihydrotestosterone (DHT). Activation of matriptase was closely followed by shedding of the activated matriptase with >90% of total activated matriptase present in the culture media 24 h after DHT treatment. Activated matriptase was shed in a complex with HAI-1 and may result from simultaneously proteolytic cleavages of both membrane-bound proteins. Latent matriptase and free HAI-1 were also shed into culture media. As a result of shedding, the cellular levels of matriptase and HAI-1 were significantly reduced 24 h after exposure to DHT. DHT-induced matriptase activation and shedding were significantly inhibited by the androgen antagonist bicalutamide, by the RNA transcription inhibitor actinomycin D, and by the protein synthesis inhibitor cycloheximide. These results suggest that in LNCaP cells, androgen induces matriptase activation via the androgen receptor, and requires transcription and protein synthesis.


Assuntos
Neoplasias da Mama/metabolismo , Di-Hidrotestosterona/farmacologia , Glicoproteínas de Membrana/metabolismo , Neoplasias da Próstata/metabolismo , Serina Endopeptidases/metabolismo , Ativação Enzimática/fisiologia , Indução Enzimática/fisiologia , Estradiol/fisiologia , Feminino , Humanos , Hidrólise , Masculino , Proteínas Secretadas Inibidoras de Proteinases , Serina Endopeptidases/biossíntese , Células Tumorais Cultivadas
6.
Clin Exp Metastasis ; 21(6): 543-52, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15679052

RESUMO

Recently, the tissue origin of MDA-MB-435 cell line has been the subject of considerable debate. In this study, we set out to determine whether MDA-MB-435-DTP cells shown to express melanoma-specific genes were identical to various other MDA-MB-435 cell stocks worldwide. CGH-microarray, genetic polymorphism genotyping, microsatellite fingerprint analysis and/or chromosomal number confirmed that the MDA-MB-435 cells maintained at the Lombardi Comprehensive Cancer Center (MDA-MB-435-LCC) are almost identical to the MDA-MB-435-DTP cells, and showed a very similar profile to those obtained from the same original source (MD Anderson Cancer Center) but maintained independently (MDA-MB-435-PMCC). Gene expression profile analysis confirmed common expression of genes among different MDA-MB-435-LCC cell stocks, and identified some unique gene products in MDA-MB-435-PMCC cells. RT-PCR analysis confirmed the expression of the melanoma marker tyrosinase across multiple MDA-MB-435 cell stocks. Collectively, our results show that the MDA-MB-435 cells used widely have identical origins to those that exhibit a melanoma-like gene expression signature, but exhibit a small degree of genotypic and phenotypic drift.


Assuntos
Neoplasias da Mama/patologia , Melanoma/patologia , Neoplasias Cutâneas/patologia , Células Tumorais Cultivadas/patologia , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , DNA de Neoplasias/genética , Feminino , Expressão Gênica , Humanos , Melanócitos/patologia , Melanoma/genética , Melanoma/metabolismo , Repetições de Microssatélites , Proteínas de Neoplasias/metabolismo , Hibridização de Ácido Nucleico , Ploidias , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Células Tumorais Cultivadas/classificação , Células Tumorais Cultivadas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA