Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mod Pathol ; 36(12): 100322, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37657711

RESUMO

Early detection of esophageal neoplasia via evaluation of endoscopic surveillance biopsies is the key to maximizing survival for patients with Barrett's esophagus, but it is hampered by the sampling limitations of conventional slide-based histopathology. Comprehensive evaluation of whole biopsies with 3-dimensional (3D) pathology may improve early detection of malignancies, but large 3D pathology data sets are tedious for pathologists to analyze. Here, we present a deep learning-based method to automatically identify the most critical 2-dimensional (2D) image sections within 3D pathology data sets for pathologists to review. Our method first generates a 3D heatmap of neoplastic risk for each biopsy, then classifies all 2D image sections within the 3D data set in order of neoplastic risk. In a clinical validation study, we diagnose esophageal biopsies with artificial intelligence-triaged 3D pathology (3 images per biopsy) vs standard slide-based histopathology (16 images per biopsy) and show that our method improves detection sensitivity while reducing pathologist workloads.


Assuntos
Esôfago de Barrett , Neoplasias Esofágicas , Humanos , Patologistas , Inteligência Artificial , Carga de Trabalho , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/patologia , Esôfago de Barrett/diagnóstico , Esôfago de Barrett/patologia , Biópsia/métodos
2.
IEEE Trans Biomed Eng ; 70(7): 2160-2171, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37021859

RESUMO

OBJECTIVE: For tumor resections, margin status typically correlates with patient survival but positive margin rates are generally high (up to 45% for head and neck cancer). Frozen section analysis (FSA) is often used to intraoperatively assess the margins of excised tissue, but suffers from severe under-sampling of the actual margin surface, inferior image quality, slow turnaround, and tissue destructiveness. METHODS: Here, we have developed an imaging workflow to generate en face histologic images of freshly excised surgical margin surfaces based on open-top light-sheet (OTLS) microscopy. Key innovations include (1) the ability to generate false-colored H&E-mimicking images of tissue surfaces stained for < 1 min with a single fluorophore, (2) rapid OTLS surface imaging at a rate of 15 min/cm2 followed by real-time post-processing of datasets within RAM at a rate of 5 min/cm2, and (3) rapid digital surface extraction to account for topological irregularities at the tissue surface. RESULTS: In addition to the performance metrics listed above, we show that the image quality generated by our rapid surface-histology method approaches that of gold-standard archival histology. CONCLUSION: OTLS microscopy has the feasibility to provide intraoperative guidance of surgical oncology procedures. SIGNIFICANCE: The reported methods can potentially improve tumor-resection procedures, thereby improving patient outcomes and quality of life.


Assuntos
Margens de Excisão , Microscopia , Humanos , Qualidade de Vida , Técnicas Histológicas
3.
Arch Pathol Lab Med ; 147(10): 1164-1171, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36596255

RESUMO

CONTEXT.­: Anatomic pathologists render diagnosis on tissue samples sectioned onto glass slides and viewed under a bright-field microscope. This approach is destructive to the sample, which can limit its use for ancillary assays that can inform patient management. Furthermore, the subjective interpretation of a relatively small number of 2D tissue sections per sample contributes to low interobserver agreement among pathologists for the assessment (diagnosis and grading) of various lesions. OBJECTIVE.­: To evaluate 3D pathology data sets of thick formalin-fixed Barrett esophagus specimens imaged nondestructively with open-top light-sheet (OTLS) microscopy. DESIGN.­: Formalin-fixed, paraffin-embedded Barrett esophagus samples (N = 15) were deparaffinized, stained with a fluorescent analog of hematoxylin-eosin, optically cleared, and imaged nondestructively with OTLS microscopy. The OTLS microscopy images were subsequently compared with archived hematoxylin-eosin histology sections from each sample. RESULTS.­: Barrett esophagus samples, both small endoscopic forceps biopsies and endoscopic mucosal resections, exhibited similar resolvable structures between OTLS microscopy and conventional light microscopy with up to a ×20 objective (×200 overall magnification). The 3D histologic images generated by OTLS microscopy can enable improved discrimination of cribriform and well-formed gland morphologies. In addition, a much larger amount of tissue is visualized with OTLS microscopy, which enables improved assessment of clinical specimens exhibiting high spatial heterogeneity. CONCLUSIONS.­: In esophageal specimens, OTLS microscopy can generate images comparable in quality to conventional light microscopy, with the advantages of providing 3D information for enhanced evaluation of glandular morphologies and enabling much more of the tissue specimen to be visualized nondestructively.


Assuntos
Esôfago de Barrett , Humanos , Esôfago de Barrett/diagnóstico , Esôfago de Barrett/patologia , Microscopia/métodos , Hematoxilina , Amarelo de Eosina-(YS) , Formaldeído
4.
Nat Methods ; 19(5): 613-619, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35545715

RESUMO

Light-sheet microscopy has emerged as the preferred means for high-throughput volumetric imaging of cleared tissues. However, there is a need for a flexible system that can address imaging applications with varied requirements in terms of resolution, sample size, tissue-clearing protocol, and transparent sample-holder material. Here, we present a 'hybrid' system that combines a unique non-orthogonal dual-objective and conventional (orthogonal) open-top light-sheet (OTLS) architecture for versatile multi-scale volumetric imaging. We demonstrate efficient screening and targeted sub-micrometer imaging of sparse axons within an intact, cleared mouse brain. The same system enables high-throughput automated imaging of multiple specimens, as spotlighted by a quantitative multi-scale analysis of brain metastases. Compared with existing academic and commercial light-sheet microscopy systems, our hybrid OTLS system provides a unique combination of versatility and performance necessary to satisfy the diverse requirements of a growing number of cleared-tissue imaging applications.


Assuntos
Microscopia , Animais , Camundongos , Microscopia/métodos
5.
J Biomed Opt ; 27(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35315258

RESUMO

SIGNIFICANCE: For breast cancer patients, the extent of regional lymph node (LN) metastasis influences the decision to remove all axillary LNs. Metastases are currently identified and classified with visual analysis of a few thin tissue sections with conventional histology that may underrepresent the extent of metastases. AIM: We sought to enable nondestructive three-dimensional (3D) pathology of human axillary LNs and to develop a practical workflow for LN staging with our method. We also sought to evaluate whether 3D pathology improves staging accuracy in comparison to two-dimensional (2D) histology. APPROACH: We developed a method to fluorescently stain and optically clear LN specimens for comprehensive imaging with multiresolution open-top light-sheet microscopy. We present an efficient imaging and data-processing workflow for rapid evaluation of H&E-like datasets in 3D, with low-resolution screening to identify potential metastases followed by high-resolution localized imaging to confirm malignancy. RESULTS: We simulate LN staging with 3D and 2D pathology datasets from 10 metastatic nodes, showing that 2D pathology consistently underestimates metastasis size, including instances in which 3D pathology would lead to upstaging of the metastasis with important implications on clinical treatment. CONCLUSIONS: Our 3D pathology method may improve clinical management for breast cancer patients by improving staging accuracy of LN metastases.


Assuntos
Neoplasias da Mama , Axila/patologia , Neoplasias da Mama/patologia , Feminino , Humanos , Linfonodos/diagnóstico por imagem , Linfonodos/patologia , Metástase Linfática/diagnóstico por imagem , Estadiamento de Neoplasias
6.
Cancer Res ; 82(2): 334-345, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34853071

RESUMO

Prostate cancer treatment planning is largely dependent upon examination of core-needle biopsies. The microscopic architecture of the prostate glands forms the basis for prognostic grading by pathologists. Interpretation of these convoluted three-dimensional (3D) glandular structures via visual inspection of a limited number of two-dimensional (2D) histology sections is often unreliable, which contributes to the under- and overtreatment of patients. To improve risk assessment and treatment decisions, we have developed a workflow for nondestructive 3D pathology and computational analysis of whole prostate biopsies labeled with a rapid and inexpensive fluorescent analogue of standard hematoxylin and eosin (H&E) staining. This analysis is based on interpretable glandular features and is facilitated by the development of image translation-assisted segmentation in 3D (ITAS3D). ITAS3D is a generalizable deep learning-based strategy that enables tissue microstructures to be volumetrically segmented in an annotation-free and objective (biomarker-based) manner without requiring immunolabeling. As a preliminary demonstration of the translational value of a computational 3D versus a computational 2D pathology approach, we imaged 300 ex vivo biopsies extracted from 50 archived radical prostatectomy specimens, of which, 118 biopsies contained cancer. The 3D glandular features in cancer biopsies were superior to corresponding 2D features for risk stratification of patients with low- to intermediate-risk prostate cancer based on their clinical biochemical recurrence outcomes. The results of this study support the use of computational 3D pathology for guiding the clinical management of prostate cancer. SIGNIFICANCE: An end-to-end pipeline for deep learning-assisted computational 3D histology analysis of whole prostate biopsies shows that nondestructive 3D pathology has the potential to enable superior prognostic stratification of patients with prostate cancer.


Assuntos
Aprendizado Profundo , Imageamento Tridimensional/métodos , Próstata/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/epidemiologia , Idoso , Biópsia com Agulha de Grande Calibre , Estudos de Coortes , Humanos , Masculino , Pessoa de Meia-Idade , Próstata/patologia , Prostatectomia , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia , Medição de Risco , Coloração e Rotulagem
7.
Lab Chip ; 21(1): 122-142, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33174580

RESUMO

As preclinical animal tests often do not accurately predict drug effects later observed in humans, most drugs under development fail to reach the market. Thus there is a critical need for functional drug testing platforms that use human, intact tissues to complement animal studies. To enable future multiplexed delivery of many drugs to one small biopsy, we have developed a multi-well microfluidic platform that selectively treats cuboidal-shaped microdissected tissues or "cuboids" with well-preserved tissue microenvironments. We create large numbers of uniformly-sized cuboids by semi-automated sectioning of tissue with a commercially available tissue chopper. Here we demonstrate the microdissection method on normal mouse liver, which we characterize with quantitative 3D imaging, and on human glioma xenograft tumors, which we evaluate after time in culture for viability and preservation of the microenvironment. The benefits of size uniformity include lower heterogeneity in future biological assays as well as facilitation of their physical manipulation by automation. Our prototype platform consists of a microfluidic circuit whose hydrodynamic traps immobilize the live cuboids in arrays at the bottom of a multi-well plate. Fluid dynamics simulations enabled the rapid evaluation of design alternatives and operational parameters. We demonstrate the proof-of-concept application of model soluble compounds such as dyes (CellTracker, Hoechst) and the cancer drug cisplatin. Upscaling of the microfluidic platform and microdissection method to larger arrays and numbers of cuboids could lead to direct testing of human tissues at high throughput, and thus could have a significant impact on drug discovery and personalized medicine.


Assuntos
Antineoplásicos , Técnicas Analíticas Microfluídicas , Neoplasias , Preparações Farmacêuticas , Animais , Antineoplásicos/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Camundongos , Microfluídica , Neoplasias/tratamento farmacológico , Medicina de Precisão , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA