Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 60(7): 4397-4409, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33729794

RESUMO

Functionalization of metal-organic frameworks (MOFs) is critical in exploring their structural and chemical diversity for numerous potential applications. Herein, we report multiple approaches for the tandem postsynthetic modification (PSM) of various MOFs derived from Zr(IV), Al(III), and Zn(II). Our current work is based on our efforts to develop a wide range of MOF platforms with a dynamic functional nature that can be chemically switched via thermally triggered reversible Diels-Alder (DA) and hetero-Diels-Alder (HDA) ligations. Furan-tagged MOFs (furan-UiO-66-Zr) were conjugated with maleimide groups bearing dienophiles to prepare MOFs with a chemically switchable nature. As HDA pairs, phosphoryl dithioester-based moieties and cyclopentadiene (Cp)-grafted MOF (Cp-MIL-53-Al) were utilized to demonstrate the cleavage and rebonding of the linkages as a function of temperature. In addition to these strategies, the Michael addition reaction was also applied for the tandem PSM of IRMOF-3-Zn. Maleimide groups were postsynthetically introduced in the MOF lattice, which were further ligated with cysteine-based biomolecules via the thiol-maleimide Michael addition reaction. On the basis of the versatility of the herein presented chemistry, we expect that these approaches will help in designing a variety of sophisticated functional MOF materials addressing diverse applications.

2.
Langmuir ; 37(3): 1073-1081, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33356289

RESUMO

Variable interfacial tension could be desirable for many applications. Beyond classical stimuli like temperature, we introduce an electrochemical approach employing polymers. Hence, aqueous solutions of the nonionic-cationic block copolymer poly(ethylene oxide)114-b-poly{[2-(methacryloyloxy)ethyl]diisopropylmethylammonium chloride}171 (i.e., PEO114-b-PDPAEMA171 with a quaternized poly(diisopropylaminoethyl methacrylate) block) were investigated by emerging drop measurements and dynamic light scattering, analyzing the PEO114-b-qPDPAEMA171 impact on the interfacial tension between water and n-decane and its micellar formation in the aqueous bulk phase. Potassium hexacyanoferrates (HCFs) were used as electroactive complexants for the charged block, which convert the bishydrophilic copolymer into amphiphilic species. Interestingly, ferricyanides ([Fe(CN)6]3-) act as stronger complexants than ferrocyanides ([Fe(CN)6]4-), leading to an insoluble qPDPAEMA block in the presence of ferricyanides. Hence, bulk micellization was demonstrated by light scattering. Due to their addressability, in situ redox experiments were performed to trace the interfacial tension under electrochemical control, directly utilizing a drop shape analyzer. Here, the open-circuit potential (OCP) was changed by electrolysis to vary the ratio between ferricyanides and ferrocyanides in the aqueous solution. While a chemical oxidation/reduction is feasible, also an electrochemical oxidation leads to a significant change in the interfacial tension properties. In contrast, a corresponding electrochemical reduction showed only a slight response after converting ferricyanides to ferrocyanides. Atomic force microscopy (AFM) images of the liquid/liquid interface transferred to a solid substrate showed particles that are in accordance with the diameter from light scattering experiments of the bulk phase. In conclusion, the present results could be an important step toward economic switching of interfaces suitable, e.g., for emulsion breakage.

3.
Adv Mater ; 32(34): e2003060, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32644269

RESUMO

The implementation of stimuli-responsive bonds into 3D network assemblies is a key concept to design adaptive materials that can reshape and degrade. Here, a straightforward but unique photoresist is introduced for the tailored fabrication of poly(ethylene glycol) (PEG) materials that can be readily erased by water, even without the need for acidic or basic additives. Specifically, a new class of photoresist is developed that operates through the backbone crosslinking of PEG when irradiated in the presence of a bivalent triazolinedione. Hence, macroscopic gels are obtained upon visible light-emitting diode irradiation (λ > 515 nm) that are stable in organic media but rapidly degrade upon the addition of water. Photoinduced curing is also applicable to multiphoton laser lithography (λ > 700 nm), hence providing access to 3D printed microstructures that vanish when immersed in water at 37 °C. Materials with varying crosslinking densities are accessed by adapting the applied laser writing power, thereby allowing for tunable hydrolytic erasing timescales. A new platform technology is thus presented that enables the crosslinking and 3D laser printing of PEG-based materials, which can be cleaved and erased in water, and additionally holds potential for the facile modification and backbone degradation of polyether-containing materials in general.

4.
Macromol Rapid Commun ; 40(1): e1800491, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30142244

RESUMO

Cyclotides are small cyclic polypeptides found in a variety of organisms, ranging from bacteria to plants. Their ring structure endows those polypeptides with specific properties, such as improved stability against enzymatic degradation. Optimal cyclotide activity is often observed only in the presence of intra-ring disulfide bonds. Synthesis of soft nano-objects mimicking the conformation of natural cyclotides remains challenging. Here, a new class of natural cyclotide mimics synthesized by a stepwise folding-activation-collapse process at high dilution starting from simple synthetic precursor polymers is established. The initial folding step is carried out by a photoactivated hetero Diels-Alder (HDA) ring-closing reaction, which is accompanied by chain compaction of the individual precursor polymer chains as determined by size exclusion chromatography (SEC). The subsequent activation step comprises a simple azidation procedure, whereas the final collapse step is driven by CuAAC in the presence of an external cross-linker, providing additional compaction to the final single-ring nanoparticles (SRNPs). The unique structure and compaction degree of the SRNPs is established via a detailed comparison with conventional single-chain nanoparticles (SCNPs) prepared exclusively by chain collapse from the exact same precursor polymer (without the prefolding step). The stepwise folding-activation-collapse approach opens new avenues for the preparation of artificial cyclotide mimetics.


Assuntos
Produtos Biológicos/síntese química , Ciclotídeos/síntese química , Nanopartículas/química , Produtos Biológicos/química , Reação de Cicloadição , Ciclotídeos/química , Estrutura Molecular , Dobramento de Proteína
5.
Small ; 14(36): e1801571, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30079605

RESUMO

Recent advances in super-resolution microscopy and fluorescence bioimaging allow exploring previously inaccessible biological processes. To this end, there is a need for novel fluorescent probes with specific features in size, photophysical properties, colloidal and optical stabilities, as well as biocompatibility and ability to evade the reticuloendothelial system. Herein, novel fluorescent nanoparticles are introduced based on an inherently fluorescent polypyrazoline (PPy) core and a polyethylene glycol (PEG) shell, which address all aforementioned challenges. Synthesis of the PPy-PEG amphiphilic block copolymer by phototriggered step-growth polymerization is investigated by NMR spectroscopy, size-exclusion chromatography, and mass spectrometry. The corresponding nanoparticles are characterized for their luminescent properties and hydrodynamic size in various aqueous environments (e.g., cell culture media). PPy nanoparticles particularly exhibit a large Stokes shift (Δλ = 160 nm or Δν > 7000 cm-1 ) with visible light excitation and strong colloidal stability. While clearance by macrophages and endothelial cells is minimal, PPy displays good biocompatibility. Finally, PPy nanoparticles prove to be long circulating when injected in zebrafish embryos, as observed by in vivo time-lapse fluorescence microscopy. In summary, PPy nanoparticles are highly promising to be further developed as fluorescent nanodelivery systems with low toxicity and exquisite retention in the blood stream.


Assuntos
Diagnóstico por Imagem/métodos , Nanopartículas/química , Pirazóis/química , Animais , Materiais Biocompatíveis/química , Embrião não Mamífero/metabolismo , Fluorescência , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Hidrodinâmica , Nanopartículas/ultraestrutura , Polímeros/síntese química , Polímeros/química , Pirazóis/síntese química , Peixe-Zebra/embriologia
6.
Biomacromolecules ; 19(2): 481-489, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29316394

RESUMO

The introduction of a strategy toward polymer/nanodiamond hybrids with high polymer grafting density and accessible polymer structural characterization is of critical importance for nanodiamonds' surface modification and bioagent attachment for their biomedical application. Here, we report a glycopolymer/nanodiamond hybrid drug delivery system, which was prepared by grafting amonafide-conjugated glycopolymers onto the surface of nanodiamonds via oxime ligation. Poly(1-O-methacryloyl-2,3:4,5-di-O-isopropylidene-ß-d-fructopyranose)-b-poly(3-vinylbenzaldehyde-co-methyl methacrylate), featuring pendant aldehyde groups, is prepared via RAFT polymerization. The anticancer drug amonafide is conjugated to the polymer chains via imine chemistry, resulting in acid-degradable imine linkages. The obtained amonafide-conjugated glycopolymers are subsequently grafted onto the surface of aminooxy-functionalized nanodiamonds via oxime ligation. The molecular weight of the conjugated polymers is characterized by size-exclusion chromatography (SEC), while the successful conjugation and corresponding grafting density is assessed by nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric aanalysis (TGA). Our results indicate that the mass percentage of amonafide in the polymer chains is around 17% and the surface density of polymer chains is 0.24 molecules/nm2. The prepared drug delivery system has a hydrodynamic size around 380 nm with low PDI (0.3) and can effectively deliver amonafide into breast cancer cell and significantly inhibit the cancer cell viability. In 2D cell culture models, the IC50 values of ND-Polymer-AMF delivery system (7.19 µM for MCF-7; 4.92 µM for MDA-MB-231) are lower than those of free amonafide (11.23 µM for MCF-7; 13.98 µM for MDA-MB-231). An inhibited cell viability of nanodiamonds/polymer delivery system is also observed in 3D spheroids' models, suggesting that polymer-diamonds hybrid materials can be promising platforms for breast cancer therapy.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Materiais Revestidos Biocompatíveis , Sistemas de Liberação de Medicamentos/métodos , Frutose , Nanodiamantes , Naftalimidas , Adenina , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Feminino , Frutose/química , Frutose/farmacologia , Humanos , Células MCF-7 , Nanodiamantes/química , Nanodiamantes/uso terapêutico , Naftalimidas/química , Naftalimidas/farmacologia , Organofosfonatos
7.
J Mater Chem B ; 5(25): 4993-5000, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32264016

RESUMO

We present a novel methodology to generate recodable surfaces using cysteine-rich domains (CRD) via a combination of photolithography and reversible covalently peptide-driven disulfide formation. Therefore, two 21mer CRD peptide derivatives were synthesized, one bearing an electron deficient fumarate group for immobilization via nitrile imine-ene mediated cycloaddition (NITEC) to a tetrazole-functional surface. Secondly, a bromine moiety is introduced to the CRD for analytic labelling purposes to detect surface encoding. The photolithography is conducted by selectively passivating the surface with a polyethylene glycol (PEG)-fumarate via NITEC using a photomask in a dotted pattern. Consecutively, the CRD-fumarate is immobilized via NITEC adjacent to the PEG-functional areas to the unaffected tetrazole covered surface layer. Subsequently, the CRD-bromide is covalently linked to the CRD-fumarate by forming disulfide bonds under mild reoxidative conditions in a buffer solution. The CRD-bromide is released from the surface upon reduction to recover the prior state of the surface without the bromine marker. The analysis of the CRD precursors is based on electrospray ionization mass spectrometry (ESI-MS). The surface analytics were carried out via time-of-flight secondary ion mass spectrometry (ToF-SIMS), unambiguously verifying the successful immobilization as well as coding and decoding of the CRD-bromide on the surface based on dynamically reversible disulfide bond formation.

8.
Biomacromolecules ; 17(9): 2946-55, 2016 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-27442218

RESUMO

Well-defined carboxyl end-functionalized glycopolymer Poly(1-O-methacryloyl-2,3:4,5-di-O-isopropylidene-ß-d-fructopyranose) (Poly(1-O-MAipFru)62) has been prepared via reversible addition-fragmentation chain transfer polymerization and grafted onto the surface of amine-functionalized nanodiamonds via a simple conjugation reaction. The properties of the nanodiamond-polymer hybrid materials ND-Poly(1-O-MAFru)62 are investigated using infrared spectroscopy, thermogravimetric analysis, dynamic light scattering, and transmission electron microscopy. The dispersibility of the nanodiamonds in aqueous solutions is significantly improved after the grafting of the glycopolymer. More interestingly, the cytotoxicity of amine-functionalized nanodiamonds is significantly decreased after decoration with the glycopolymer even at a high concentration (125 µg/mL). The nanodiamonds were loaded with doxorubicin to create a bioactive drug delivery carrier. The release of doxorubicin was faster in media of pH 5 than media of pH 7.4. The nanodiamond drug delivery systems with doxorubicin are used to treat breast cancer cells in 2D and 3D models. Although the 2D cell culture results indicate that all nanodiamonds-doxorubicin complexes are significantly less toxic than free doxorubicin, the glycopolymer-coated nanodiamonds-doxorubicin show higher cytotoxicity than free doxorubicin in the 3D spheroids after treatment for 8 days. The enhanced cytotoxicity of Poly(1-O-MAFru)62-ND-Dox in 3D spheroids may result from the sustained drug release and deep penetration of these nanocarriers, which play a role as a "Trojan Horse". The massive cell death after 8-day incubation with Poly(1-O-MAFru)62-ND-Dox demonstrates that glycopolymer-coated nanodiamonds can be promising platforms for breast cancer therapy.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Frutose/química , Nanodiamantes/administração & dosagem , Polímeros/química , Antibióticos Antineoplásicos/química , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Liberação Controlada de Fármacos , Feminino , Humanos , Nanodiamantes/química , Polímeros/administração & dosagem , Esferoides Celulares/efeitos dos fármacos , Células Tumorais Cultivadas
9.
Chemistry ; 21(1): 228-38, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25359430

RESUMO

A disulfide intercalator toolbox was developed for site-specific attachment of a broad variety of functional groups to proteins or peptides under mild, physiological conditions. The peptide hormone somatostatin (SST) served as model compound for intercalation into the available disulfide functionalization schemes starting from the intercalator or the reactive SST precursor before or after bioconjugation. A tetrazole-SST derivative was obtained that undergoes photoinduced cycloaddition in mammalian cells, which was monitored by live-cell imaging.


Assuntos
Dissulfetos/química , Substâncias Intercalantes/química , Somatostatina/química , Linhagem Celular Tumoral , Química Click , Reação de Cicloadição , Dendrímeros/química , Doxorrubicina/química , Humanos , Microscopia Confocal , Somatostatina/metabolismo , Tetrazóis/química , Raios Ultravioleta
10.
Chem Commun (Camb) ; 50(99): 15681-4, 2014 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-25355650

RESUMO

A facile, fast and ambient-temperature avenue towards highly fluorescent polymers is introduced via polymerizing non-fluorescent photoreactive monomers based on light-induced NITEC chemistry, providing a platform technology for fluorescent polymers. The resulting polypyrazolines were analyzed in depth and the photo-triggered step-growth process was monitored in a detailed kinetic study.


Assuntos
Polímeros/química , Reação de Cicloadição , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Iminas/química , Cinética , Nitrilas/química , Polimerização , Pirazóis/química , Tetrazóis/química , Raios Ultravioleta
11.
J Mater Chem B ; 2(23): 3578-3581, 2014 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32263794

RESUMO

A degradable polyphthalaldehyde-polystyrene block copolymer generated by modular ligation is reported for the first time serving as a nanochannel template for the formation of nanostructured materials. The polyphthalaldehyde-b-polystyrene copolymer was spin-coated onto a surface with subsequent polyphthalaldehyde block removal. Block conjugation and block removal were confirmed by H-NMR, SEC, AFM, and SEM.

13.
Angew Chem Int Ed Engl ; 51(36): 9181-4, 2012 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-22890544

RESUMO

Making light work of ligation: A novel method utilizes light for oxime ligation chemistry. A quantitative, low-energy photodeprotection generates aldehyde, which subsequently reacts with aminooxy moieties. The spatial control allows patterning on surfaces with a fluoro marker and GRGSGR peptide, and can be imaged by time-of-flight secondary-ion mass spectrometry.


Assuntos
Oximas/química , Sequência de Aminoácidos , Química Click , Peptídeos/química , Espectrometria de Massa de Íon Secundário , Propriedades de Superfície , Raios Ultravioleta
15.
Macromol Rapid Commun ; 31(18): 1616-21, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21567572

RESUMO

In the current work we present results on the controlled/living radical copolymerization of acrylonitrile (AN) and 1,3-butadiene (BD) via reversible addition fragmentation chain transfer (RAFT) polymerization techniques. For the first time, a solution polymerization process for the synthesis of nitrile butadiene rubber (NBR) via the use of dithioacetate and trithiocarbonate RAFT agents is described. It is demonstrated that the number average molar mass, $\overline M _{\rm n} $, of the NBR can be varied between a few thousand and 60 000 g · mol(-1) with polydispersities between 1.2 and 2.0 (depending on the monomer to polymer conversion). Excellent agreement between the experimentally observed and the theoretically expected molar masses is found. Detailed information on the structure of the synthesized polymers is obtained by variable analytical techniques such as infrared spectroscopy (IR), nuclear magnetic resonance (NMR) spectroscopy, differential scanning calorimetry, and electrospray ionization-mass spectrometry (ESI-MS).

16.
Biomacromolecules ; 7(4): 1072-82, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16602723

RESUMO

Honeycomb-structured porous films were prepared using customized amphiphilic block copolymers, synthesized by RAFT polymerization. Pyrrole was templated along an amphiphilic block copolymer, composed of polystyrene and poly(acrylic acid). Subsequent oxidation of pyrrol to polypyrrole, resulted in the formation of a soluble polypyrrole-containing polymer. Gel permeation chromatography and dynamic light scattering studies confirmed the solubility of the resulting customized amphiphilic block copolymer, in both water and organic solvent, forming either micelles or inverse aggregates. Porous films with a hexagonal array of micron-sized pores were generated with the polymer, using the breath figures templating technique. The resulting films were found to be non-cytotoxic and hence suitable as scaffolds for tissue engineering. Initial fibroblast cell culture studies on these scaffolds demonstrated a dependency of cell attachment on the pore size of scaffolds.


Assuntos
Resinas Acrílicas/síntese química , Resinas Acrílicas/farmacologia , Membranas Artificiais , Polímeros/química , Poliestirenos/síntese química , Poliestirenos/farmacologia , Pirróis/química , Resinas Acrílicas/química , Adsorção , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Camundongos , Micelas , Estrutura Molecular , Oxirredução , Tamanho da Partícula , Poliestirenos/química , Porosidade , Solubilidade , Solventes/química , Temperatura , Fatores de Tempo , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA