Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neuropsychopharmacology ; 40(9): 2185-97, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25754762

RESUMO

Inhibition of the enzyme fatty acid amide hydrolase (FAAH) counteracts reward-related effects of nicotine in rats, but it has not been tested for this purpose in non-human primates. Therefore, we studied the effects of the first- and second-generation O-arylcarbamate-based FAAH inhibitors, URB597 (cyclohexyl carbamic acid 3'-carbamoyl-3-yl ester) and URB694 (6-hydroxy-[1,1'-biphenyl]-3-yl-cyclohexylcarbamate), in squirrel monkeys. Both FAAH inhibitors: (1) blocked FAAH activity in brain and liver, increasing levels of endogenous ligands for cannabinoid and α-type peroxisome proliferator-activated (PPAR-α) receptors; (2) shifted nicotine self-administration dose-response functions in a manner consistent with reduced nicotine reward; (3) blocked reinstatement of nicotine seeking induced by reexposure to either nicotine priming or nicotine-associated cues; and (4) had no effect on cocaine or food self-administration. The effects of FAAH inhibition on nicotine self-administration and nicotine priming-induced reinstatement were reversed by the PPAR-α antagonist, MK886. Unlike URB597, which was not self-administered by monkeys in an earlier study, URB694 was self-administered at a moderate rate. URB694 self-administration was blocked by pretreatment with an antagonist for either PPAR-α (MK886) or cannabinoid CB1 receptors (rimonabant). In additional experiments in rats, URB694 was devoid of THC-like or nicotine-like interoceptive effects under drug-discrimination procedures, and neither of the FAAH inhibitors induced dopamine release in the nucleus accumbens shell--consistent with their lack of robust reinforcing effects in monkeys. Overall, both URB597 and URB694 show promise for the initialization and maintenance of smoking cessation because of their ability to block the rewarding effects of nicotine and prevent nicotine priming-induced and cue-induced reinstatement.


Assuntos
Benzamidas/farmacologia , Carbamatos/farmacologia , Oxigenases de Função Mista/antagonistas & inibidores , Nicotina/administração & dosagem , Agonistas Nicotínicos/administração & dosagem , Recompensa , Animais , Compostos de Bifenilo/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Sinais (Psicologia) , Dopamina/metabolismo , Relação Dose-Resposta a Droga , Comportamento de Procura de Droga/efeitos dos fármacos , Extinção Psicológica/efeitos dos fármacos , Masculino , Oxigenases de Função Mista/metabolismo , Modelos Animais , Ratos , Ratos Sprague-Dawley , Recidiva , Saimiri , Autoadministração , Fatores de Tempo
2.
Neuropsychopharmacology ; 38(7): 1198-208, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23314220

RESUMO

Although it is more common for drug abuse to progress from tobacco to cannabis, in many cases cannabis use develops before tobacco use. Epidemiological evidence indicates that prior cannabis use increases the likelihood of becoming dependent on tobacco. To determine whether this effect might be due to cannabis exposure per se, in addition to any genetic, social, or environmental factors that might contribute, we extended our series of studies on 'gateway drug' effects in animal models of drug abuse. Rats were exposed to THC, the main psychoactive constituent of cannabis, for 3 days (two intraperitoneal injections/day). Then, starting 1 week later, they were allowed to self-administer nicotine intravenously. THC exposure increased the likelihood of acquiring the nicotine self-administration response from 65% in vehicle-exposed rats to 94% in THC-exposed rats. When the price of nicotine was manipulated by increasing the response requirement, THC-exposed rats maintained higher levels of intake than vehicle-exposed rats, indicating that THC exposure increased the value of nicotine reward. These results contrast sharply with our earlier findings that prior THC exposure did not increase the likelihood of rats acquiring either heroin or cocaine self-administration, nor did it increase the reward value of these drugs. The findings obtained here suggest that a history of cannabis exposure might have lasting effects that increase the risk of becoming addicted to nicotine.


Assuntos
Comportamento Aditivo/induzido quimicamente , Agonistas de Receptores de Canabinoides/farmacologia , Dronabinol/farmacologia , Nicotina/farmacologia , Animais , Comportamento Aditivo/psicologia , Condicionamento Operante/efeitos dos fármacos , Sinergismo Farmacológico , Masculino , Atividade Motora/efeitos dos fármacos , Nicotina/administração & dosagem , Agonistas Nicotínicos/administração & dosagem , Agonistas Nicotínicos/farmacologia , Ratos , Esquema de Reforço , Recompensa , Autoadministração
3.
Neuropsychopharmacology ; 37(8): 1838-47, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22453137

RESUMO

Experimental drugs that activate α-type peroxisome proliferator-activated receptors (PPARα) have recently been shown to reduce the rewarding effects of nicotine in animals, but these drugs have not been approved for human use. The fibrates are a class of PPARα-activating medications that are widely prescribed to improve lipid profiles and prevent cardiovascular disease, but these drugs have not been tested in animal models of nicotine reward. Here, we examine the effects of clofibrate, a representative of the fibrate class, on reward-related behavioral, electrophysiological, and neurochemical effects of nicotine in rats and squirrel monkeys. Clofibrate prevented the acquisition of nicotine-taking behavior in naive animals, substantially decreased nicotine taking in experienced animals, and counteracted the relapse-inducing effects of re-exposure to nicotine or nicotine-associated cues after a period of abstinence. In the central nervous system, clofibrate blocked nicotine's effects on neuronal firing in the ventral tegmental area and on dopamine release in the nucleus accumbens shell. All of these results suggest that fibrate medications might promote smoking cessation. The fact that fibrates are already approved for human use could expedite clinical trials and subsequent implementation of fibrates as a treatment for tobacco dependence, especially in smokers with abnormal lipid profiles.


Assuntos
Clofibrato/farmacologia , Avaliação Pré-Clínica de Medicamentos/psicologia , Hipolipemiantes/farmacologia , Nicotina/farmacologia , Recompensa , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Clofibrato/uso terapêutico , Modelos Animais de Doenças , Dopamina/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Indóis/farmacologia , Masculino , Neurônios/fisiologia , Nicotina/administração & dosagem , Nicotina/antagonistas & inibidores , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , PPAR alfa/agonistas , PPAR alfa/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley , Saimiri , Prevenção Secundária , Autoadministração , Tabagismo/tratamento farmacológico , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/fisiologia
4.
Int J Neuropsychopharmacol ; 15(9): 1265-74, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21939589

RESUMO

Effects of varenicline (Champix), a nicotinic partial agonist, were evaluated on subjective effects of nicotine (drug discrimination), motivation for nicotine taking (progressive-ratio schedule of intravenous nicotine self-administration) and reinstatement (cue-induced reinstatement of previously extinguished nicotine-seeking behaviour). Effects on motor performance were assessed in rats trained to discriminate nicotine (0.4 mg/kg) from saline under a fixed-ratio (FR 10) schedule of food delivery and in rats trained to respond for food under a progressive-ratio schedule. At short pretreatment times (5-40 min), varenicline produced full or high levels of partial generalization to nicotine's discriminative-stimulus effects and disrupted responding for food, while there were low levels of partial generalization and no disruption of responding for food at 2- or 4-h pretreatment times. Varenicline (1 and 3 mg/kg, 2-h pretreatment time) enhanced discrimination of low doses of nicotine and to a small extent decreased discrimination of the training dose of nicotine. It also dose-dependently decreased nicotine-taking behaviour, but had no effect on food-taking behaviour under progressive-ratio schedules. Finally, varenicline significantly reduced the ability of a nicotine-associated cue to reinstate extinguished nicotine-seeking behaviour. The ability of varenicline to reduce both nicotine-taking and nicotine-seeking behaviour can contribute to its relatively high efficacy in treating human smokers.


Assuntos
Benzazepinas/farmacologia , Sinais (Psicologia) , Comportamento de Procura de Droga/efeitos dos fármacos , Quinoxalinas/farmacologia , Tabagismo/tratamento farmacológico , Animais , Condicionamento Operante/efeitos dos fármacos , Interpretação Estatística de Dados , Discriminação Psicológica/efeitos dos fármacos , Relação Dose-Resposta a Droga , Comportamento Alimentar/efeitos dos fármacos , Masculino , Motivação/efeitos dos fármacos , Nicotina/farmacologia , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley , Esquema de Reforço , Autoadministração , Tabagismo/psicologia , Vareniclina
5.
Neuropsychopharmacology ; 37(3): 685-96, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22030716

RESUMO

Since cloning of the dopamine receptor D4 (DRD4), its role in the brain has remained unclear. It has been reported that polymorphism of the DRD4 gene in humans is associated with reactivity to cues related to tobacco smoking. However, the role of DRD4 in animal models of nicotine addiction has seldom been explored. In our study, male Long-Evans rats learned to intravenously self-administer nicotine under a fixed-ratio (FR) schedule of reinforcement. Effects of the selective DRD4 antagonist L-745,870 were evaluated on nicotine self-administration behavior and on reinstatement of extinguished nicotine-seeking behavior induced by nicotine-associated cues or by priming injections of nicotine. L-745,870 was also tested on reinstatement of extinguished food-seeking behavior as a control. In addition, the selective DRD4 agonist PD 168,077 was tested for its ability to reinstate extinguished nicotine-seeking behavior. Finally, L-745,870 was tested in Sprague Dawley rats trained to discriminate administration of 0.4 mg/kg nicotine from vehicle under an FR schedule of food delivery. L-745,870 significantly attenuated reinstatement of nicotine-seeking induced by both nicotine-associated cues and nicotine priming. In contrast, L-745,870 did not affect established nicotine self-administration behavior or reinstatement of food-seeking behavior induced by food cues or food priming. L-745,870 did not produce nicotine-like discriminative-stimulus effects and did not alter discriminative-stimulus effects of nicotine. PD 168,077 did not reinstate extinguished nicotine-seeking behavior. As DRD4 blockade by L-745,870 selectively attenuated both cue- and nicotine-induced reinstatement of nicotine-seeking behavior, without affecting cue- or food-induced reinstatement of food-seeking behavior, DRD4 antagonists are potential therapeutic agents against tobacco smoking relapse.


Assuntos
Comportamento Animal/efeitos dos fármacos , Comportamento de Procura de Droga/efeitos dos fármacos , Extinção Psicológica/efeitos dos fármacos , Nicotina/administração & dosagem , Receptores de Dopamina D4/antagonistas & inibidores , Animais , Aprendizagem por Discriminação/efeitos dos fármacos , Antagonistas de Dopamina/farmacologia , Masculino , Piridinas/farmacologia , Pirróis/farmacologia , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley , Reforço Psicológico , Autoadministração
6.
Biol Psychiatry ; 69(7): 633-41, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20801430

RESUMO

BACKGROUND: Recent findings indicate that inhibitors of fatty acid amide hydrolase (FAAH) counteract the rewarding effects of nicotine in rats. Inhibition of FAAH increases levels of several endogenous substances in the brain, including the endocannabinoid anandamide and the noncannabinoid fatty acid ethanolamides oleoylethanolamide (OEA) and palmitoylethanolamide, which are ligands for alpha-type peroxisome proliferator-activated nuclear receptors (PPAR-α). Here, we evaluated whether directly acting PPAR-α agonists can modulate reward-related effects of nicotine. METHODS: We combined behavioral, neurochemical, and electrophysiological approaches to evaluate effects of the PPAR-α agonists [[4-Chloro-6-[(2,3-dimethylphenyl)amino]-2-pyrimidinyl]thio]acetic acid (WY14643) and methyl oleoylethanolamide (methOEA; a long-lasting form of OEA) on 1) nicotine self-administration in rats and squirrel monkeys; 2) reinstatement of nicotine-seeking behavior in rats and monkeys; 3) nicotine discrimination in rats; 4) nicotine-induced electrophysiological activity of ventral tegmental area dopamine neurons in anesthetized rats; and 5) nicotine-induced elevation of dopamine levels in the nucleus accumbens shell of freely moving rats. RESULTS: The PPAR-α agonists dose-dependently decreased nicotine self-administration and nicotine-induced reinstatement in rats and monkeys but did not alter food- or cocaine-reinforced operant behavior or the interoceptive effects of nicotine. The PPAR-α agonists also dose-dependently decreased nicotine-induced excitation of dopamine neurons in the ventral tegmental area and nicotine-induced elevations of dopamine levels in the nucleus accumbens shell of rats. The ability of WY14643 and methOEA to counteract the behavioral, electrophysiological, and neurochemical effects of nicotine was reversed by the PPAR-α antagonist 1-[(4-Chlorophenyl)methyl]-3-[(1,1-dimethylethyl)thio]-a,a-dimethyl-5-(1-methylethyl)-1H-Indole-2-propanoic acid (MK886). CONCLUSIONS: These findings indicate that PPAR-α might provide a valuable new target for antismoking medications.


Assuntos
Nicotina/administração & dosagem , Agonistas Nicotínicos/administração & dosagem , PPAR alfa/metabolismo , Reforço Psicológico , Recompensa , Potenciais de Ação/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Dopamina/metabolismo , Relação Dose-Resposta a Droga , Interações Medicamentosas , Inibidores Enzimáticos/farmacologia , Indóis/farmacologia , Masculino , Microdiálise/métodos , Neurônios/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Oligossacarídeos/farmacologia , Proliferadores de Peroxissomos/farmacologia , Pirimidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Saimiri , Autoadministração , Área Tegmentar Ventral/citologia
7.
J Pharmacol Exp Ther ; 332(3): 1054-63, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19940104

RESUMO

sigma-1 Receptors are endoplasmic reticulum (ER) chaperones that are implicated in the neuroplasticity associated with psychostimulant abuse. We immunocytochemically examined the distribution of sigma-1 receptors in the brain of drug-naive rats and then examined the dynamics of sigma-1 receptors and other ER chaperones in specific brain subregions of rats that self-administered methamphetamine, received methamphetamine passively, or received only saline injections. sigma-1 Receptors were found to be expressed in moderate to high levels in the olfactory bulb, striatum, nucleus accumbens shell, olfactory tubercle, amygdala, hippocampus, red nucleus, ventral tegmental area, substantia nigra, and locus ceruleus. Methamphetamine, whether self-administered or passively received, significantly elevated ER chaperones including the sigma-1 receptor, BiP, and calreticulin in the ventral tegmental area and substantia nigra. In the olfactory bulb, however, only the sigma-1 receptor chaperone was increased, and this increase occurred only in rats that actively self-administered methamphetamine. Consistent with an increase in sigma-1 receptors, extracellular signal-regulated kinase was found to be activated and protein kinase A attenuated in the olfactory bulb of methamphetamine self-administering rats. sigma-1 Receptors in the olfactory bulb were found to be colocalized with dopamine D1 receptors. These results indicate that methamphetamine induces ER stress in the ventral tegmental area and substantia nigra in rats whether the drug is received actively or passively. However, the changes seen only in rats that actively self-administered methamphetamine suggest that D1 and sigma-1 receptors in the olfactory bulb might play an important role in the motivational conditioning/learning aspects of methamphetamine self-administration in the rat.


Assuntos
Encéfalo/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/farmacologia , Retículo Endoplasmático/metabolismo , Metanfetamina/farmacologia , Chaperonas Moleculares/biossíntese , Receptores sigma/biossíntese , Animais , Encéfalo/anatomia & histologia , Encéfalo/metabolismo , Células CHO , Estimulantes do Sistema Nervoso Central/administração & dosagem , Cricetinae , Cricetulus , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica , Masculino , Metanfetamina/administração & dosagem , Ratos , Ratos Sprague-Dawley , Autoadministração , Receptor Sigma-1
8.
Psychopharmacology (Berl) ; 203(2): 355-67, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18688601

RESUMO

RATIONALE: Adenosine receptors are involved in cocaine and methamphetamine discrimination and exposure to caffeine can affect behavioral effects of nicotine in rats. OBJECTIVES: Here we investigated the relative involvement of adenosine A(1) and A(2A) receptors in nicotine, cocaine, and methamphetamine discrimination, before and/or during chronic caffeine exposure. MATERIALS AND METHODS: The nonselective adenosine receptor antagonist caffeine, the A(1)-receptor antagonist cyclopentyltheophylline (CPT), and the A(2A)-receptor antagonist MSX-3 were evaluated in rats trained to discriminate 0.4 mg/kg nicotine from saline under a fixed-ratio schedule of food delivery. Effects of adenosine receptor antagonists were then compared in rats discriminating nicotine, methamphetamine, or cocaine from saline during chronic caffeine exposure in their drinking water. RESULTS: Caffeine, CPT, and MSX-3 partially generalized to nicotine and shifted nicotine dose-response curves leftwards. During chronic caffeine exposure, however, all three ligands failed to generalize to nicotine and failed to shift nicotine dose-response curves. In previous experiments, CPT and MSX-3 partially generalized to methamphetamine and cocaine and shifted dose-response curves leftwards. In the present experiments, CPT neither generalized nor shifted dose-response curves for methamphetamine or cocaine during chronic caffeine exposure. However, MSX-3 partially generalized to both psychostimulants and shifted their dose-response curves leftwards. Caffeine partially generalized to cocaine, but not methamphetamine, and shifted both dose-response curves leftwards. CONCLUSIONS: Both adenosine A(1) and A(2A) receptors are capable of modulating the discriminative-stimulus effects of nicotine. Chronic caffeine exposure produces complete tolerance to both A(1)- and A(2A)-mediated effects in nicotine-trained rats. In contrast, chronic caffeine exposure produces tolerance to adenosine A(1)-mediated, but not A(2A)-mediated, effects in methamphetamine- and cocaine-trained rats.


Assuntos
Cafeína/farmacologia , Cocaína/farmacologia , Discriminação Psicológica/efeitos dos fármacos , Metanfetamina/farmacologia , Nicotina/farmacologia , Receptor A1 de Adenosina/metabolismo , Receptor A2A de Adenosina/metabolismo , Agonistas do Receptor A1 de Adenosina , Antagonistas do Receptor A1 de Adenosina , Agonistas do Receptor A2 de Adenosina , Antagonistas do Receptor A2 de Adenosina , Animais , Cafeína/administração & dosagem , Condicionamento Operante/efeitos dos fármacos , Relação Dose-Resposta a Droga , Masculino , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
9.
J Pharmacol Exp Ther ; 327(2): 482-90, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18725543

RESUMO

Emerging evidence suggests that the rewarding, abuse-related effects of nicotine are modulated by the endocannabinoid system of the brain. For example, pharmacological blockade or genetic deletion of cannabinoid CB(1) receptors can reduce or eliminate many abuse-related behavioral and neurochemical effects of nicotine. Furthermore, doses of Delta(9)-tetrahydrocannabinol and nicotine that are ineffective when given alone can induce conditioned place preference when given together. These previous studies have used systemically administered CB(1) receptor agonists and antagonists and gene deletion techniques, which affect cannabinoid CB(1) receptors throughout the brain. A more functionally selective way to alter endocannabinoid activity is to inhibit fatty acid amide hydrolase (FAAH), thereby magnifying and prolonging the effects of the endocannabinoid anandamide only when and where it is synthesized and released on demand. Here, we combined behavioral and neurochemical approaches to evaluate whether the FAAH inhibitor URB597 (cyclohexyl carbamic acid 3'-carbamoyl-3-yl ester) could alter the abuse-related effects of nicotine in rats. We found that URB597, at a dose (0.3 mg/kg) that had no behavioral effects by itself, prevented development of nicotine-induced conditioned place preference (CPP) and acquisition of nicotine self-administration. URB597 also reduced nicotine-induced reinstatement in both CPP and self-administration models of relapse. Furthermore, in vivo microdialysis showed that URB597 reduced nicotine-induced dopamine elevations in the nucleus accumbens shell, the terminal area of the brain's mesolimbic reward system. These findings suggest that FAAH inhibition can counteract the addictive properties of nicotine and that FAAH may serve as a new target for development of medications for treatment of tobacco dependence.


Assuntos
Amidoidrolases/antagonistas & inibidores , Ácidos Araquidônicos/metabolismo , Benzamidas/farmacologia , Carbamatos/farmacologia , Condicionamento Psicológico/efeitos dos fármacos , Dopamina/análise , Nicotina/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Alcamidas Poli-Insaturadas/metabolismo , Tabagismo/tratamento farmacológico , Amidoidrolases/fisiologia , Animais , Endocanabinoides , Hidrólise , Masculino , Atividade Motora/efeitos dos fármacos , Núcleo Accumbens/química , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley , Recompensa , Autoadministração , Tabagismo/enzimologia
10.
Neuropharmacology ; 55(2): 190-7, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18547596

RESUMO

The striatum contains a high density of histamine H(3) receptors, but their role in striatal function is poorly understood. Previous studies have demonstrated antagonistic interactions between striatal H(3) and dopamine D(1) receptors at the biochemical level, while contradictory results have been reported about interactions between striatal H(3) and dopamine D(2) receptors. In this study, by using reserpinized mice, we demonstrate the existence of behaviorally significant antagonistic postsynaptic interactions between H(3) and D(1) and also between H(3) and dopamine D(2) receptors. The selective H(3) receptor agonist imetit inhibited, while the H(3) receptor antagonist thioperamide potentiated locomotor activation induced by either the D(1) receptor agonist SKF 38393 or the D(2) receptor agonist quinpirole. High scores of locomotor activity were obtained with H(3) receptor blockade plus D(1) and D(2) receptor co-activation, i.e., when thioperamide was co-administered with both SKF 38393 and quinpirole. Radioligand binding experiments in striatal membrane preparations showed the existence of a strong and selective H(3)-D(2) receptor interaction at the membrane level. In agonist/antagonist competition experiments, stimulation of H(3) receptors with several H(3) receptor agonists significantly decreased the affinity of D(2) receptors for the agonist. This kind of intramembrane receptor-receptor interactions are a common biochemical property of receptor heteromers. In fact, by using Bioluminescence Resonance Energy Transfer techniques in co-transfected HEK-293 cells, H(3) (but not H(4)) receptors were found to form heteromers with D(2) receptors. This study demonstrates an important role of postsynaptic H(3) receptors in the modulation of dopaminergic transmission by means of a negative modulation of D(2) receptor function.


Assuntos
Corpo Estriado/fisiologia , Receptores de Dopamina D2/fisiologia , Receptores Histamínicos H3/fisiologia , Inibidores da Captação Adrenérgica/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Linhagem Celular Transformada , Membrana Celular/efeitos dos fármacos , Corpo Estriado/citologia , Corpo Estriado/efeitos dos fármacos , AMP Cíclico/metabolismo , Dopaminérgicos/farmacologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Transferência de Energia/fisiologia , Histamínicos/farmacologia , Humanos , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Ensaio Radioligante/métodos , Reserpina/farmacologia , Transfecção
11.
Behav Pharmacol ; 19(1): 13-20, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18195590

RESUMO

The effects of topiramate, a potential treatment for drug dependence, were evaluated in two groups of rats trained to discriminate the administration of either 0.4 mg/kg nicotine or 10 mg/kg cocaine from that of saline, under a fixed-ratio 10 schedule of food delivery. Topiramate (1-60 mg/kg, intraperitoneal) did not produce any nicotine-like or cocaine-like discriminative effects by itself and did not produce any shift in the dose-response curves for nicotine or cocaine discrimination. Thus, the ability to discriminate the effects of nicotine or cocaine does not appear to be altered by topiramate administration. Furthermore, topiramate, given either alone or in combination with nicotine or cocaine, did not depress rates of responding. These experiments indicate that topiramate does not enhance or reduce the ability of rats to discriminate the effects of nicotine or cocaine.


Assuntos
Anticonvulsivantes/farmacologia , Cocaína/farmacologia , Discriminação Psicológica/efeitos dos fármacos , Inibidores da Captação de Dopamina/farmacologia , Frutose/análogos & derivados , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Animais , Relação Dose-Resposta a Droga , Frutose/administração & dosagem , Frutose/farmacologia , Injeções Intraperitoneais , Masculino , Ratos , Ratos Sprague-Dawley , Topiramato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA