Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38936979

RESUMO

Chemotherapy-induced peripheral neuropathy (CIPN) is a common side effect of chemotherapy treatment, routinely manifesting as increased pain sensitivity (allodynia) in distal extremities. Despite its prevalence, effective treatment options are limited. Cannabinoids are increasingly being evaluated for their ability to treat chronic pain conditions, including CIPN. While previous studies have revealed sex differences in cannabinoid-mediated antinociception in acute and chronic pain models, there is a paucity of studies addressing potential sex differences in the response of CIPN to cannabinoid treatment. Therefore, we evaluated the long-term anti-allodynic efficacy of CB1-selective (ACEA), CB2-selective (AM1241), and CB1/CB2 mixed (CP55,940) agonists in the cisplatin CIPN model, using both male and female mice. CB1 selective agonism was observed to have sex differences in the development of tolerance to anti-allodynic effects, with females developing tolerance more rapidly than males, while the anti-allodynic effects of selective CB2 agonism lacked tolerance development. Compound-specific changes to the female estrous cycle and female plasma estradiol levels were noted, with CB1 selective agonism decreasing plasma estradiol while CB2 selective agonism increased plasma estradiol. Chronic administration of a mixed CB1/CB2 agonist resulted in increased mRNA expression of proinflammatory cytokines and endocannabinoid regulatory enzymes in female spinal cord tissue. Ovarian tissue was noted to have proinflammatory cytokine mRNA expression following administration of a CB2 acting compound while selective CB1 agonism resulted in decreased proinflammatory cytokines and endocannabinoid regulatory enzymes in testes. These results support the need for further investigation into the role of sex and sex hormones signaling in pain and cannabinoid-mediated antinociceptive effects. Significance Statement CIPN is a common side effect of chemotherapy. We have found that both CB1 and CB2 receptor agonism produce antinociceptive effects in a cisplatin CIPN model. We observed that tolerance to CB1-mediated antinociception developed faster in females and did not develop for CB¬2-mediated antinociception. Additionally, we found contrasting roles for CB1/CB¬2 receptors in the regulation of plasma estradiol in females, with CB1 agonism attenuating estradiol and CB¬2 agonism enhancing estradiol. These findings support the exploration of cannabinoid agonists for CIPN.

2.
Biochem Pharmacol ; 214: 115665, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37348821

RESUMO

Cannabis has been used recreationally and medically for centuries, yet research into understanding the mechanisms of its therapeutic effects has only recently garnered more attention. There is evidence to support the use of cannabinoids for the treatment of chronic pain, muscle spasticity, nausea and vomiting due to chemotherapy, improving weight gain in HIV-related cachexia, emesis, sleep disorders, managing symptoms in Tourette syndrome, and patient-reported muscle spasticity from multiple sclerosis. However, tolerance and the risk for cannabis use disorder are two significant disadvantages for cannabinoid-based therapies in humans. Recent work has revealed prominent sex differences in the acute response and tolerance to cannabinoids in both humans and animal models. This review will discuss evidence demonstrating cannabinoid tolerance in rodents, non-human primates, and humans and our current understanding of the neuroadaptations occurring at the cannabinoid type 1 receptor (CB1R) that are responsible tolerance. CB1R expression is downregulated in tolerant animals and humans while there is strong evidence of CB1R desensitization in cannabinoid tolerant rodent models. Throughout the review, critical knowledge gaps are indicated and discussed, such as the lack of a neuroimaging probe to assess CB1R desensitization in humans. The review discusses the intracellular signaling pathways that are responsible for mediating CB1R desensitization and downregulation including the action of G protein-coupled receptor kinases, ß-arrestin2 recruitment, c-Jun N-terminal kinases, protein kinase A, and the intracellular trafficking of CB1R. Finally, the review discusses approaches to reduce cannabinoid tolerance in humans based on our current understanding of the neuroadaptations and mechanisms responsible for this process.


Assuntos
Canabinoides , Animais , Feminino , Humanos , Masculino , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Dronabinol/uso terapêutico , Espasticidade Muscular/tratamento farmacológico , Agonistas de Receptores de Canabinoides , Transdução de Sinais/fisiologia , Receptores de Canabinoides , Receptor CB1 de Canabinoide
3.
Pharmacol Biochem Behav ; 202: 173107, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33444598

RESUMO

Cannabis use has been increasing in recent years, particularly among women, and one of the most common uses of cannabis for medical purposes is pain relief. Pain conditions and response to analgesics have been demonstrated to be influenced by sex, and evidence is emerging that this is also true with cannabinoid-mediated analgesia. In this review we evaluate the preclinical evidence supporting sex differences in cannabinoid pharmacology, as well as emerging evidence from human studies, both clinical and observational. Numerous animal studies have reported sex differences in the antinociceptive response to natural and synthetic cannabinoids that may correlate to sex differences in expression, and function, of endocannabinoid system components. Female rodents have generally been found to be more sensitive to the effects of Δ9-THC. This finding is likely a function of both pharmacokinetic and pharmacodynamics factors including differences in metabolism, differences in cannabinoid receptor expression, and influence of ovarian hormones including estradiol and progesterone. Preclinical evidence supporting direct interactions between sex hormones and the endocannabinoid system may translate to sex differences in response to cannabis and cannabinoid use in men and women. Further research into the role of sex in endocannabinoid system function is critical as we gain a deeper understanding of the impact of the endocannabinoid system in various disease states, including chronic pain.


Assuntos
Analgésicos não Narcóticos/uso terapêutico , Cannabis/química , Dor Crônica/tratamento farmacológico , Dor Crônica/metabolismo , Dronabinol/uso terapêutico , Endocanabinoides/metabolismo , Hormônios Esteroides Gonadais/metabolismo , Fitoterapia/métodos , Extratos Vegetais/uso terapêutico , Adulto , Analgesia/métodos , Animais , Feminino , Humanos , Masculino , Fatores Sexuais , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA