Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 5247, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37640701

RESUMO

Microglial activation plays central roles in neuroinflammatory and neurodegenerative diseases. Positron emission tomography (PET) targeting 18 kDa Translocator Protein (TSPO) is widely used for localising inflammation in vivo, but its quantitative interpretation remains uncertain. We show that TSPO expression increases in activated microglia in mouse brain disease models but does not change in a non-human primate disease model or in common neurodegenerative and neuroinflammatory human diseases. We describe genetic divergence in the TSPO gene promoter, consistent with the hypothesis that the increase in TSPO expression in activated myeloid cells depends on the transcription factor AP1 and is unique to a subset of rodent species within the Muroidea superfamily. Finally, we identify LCP2 and TFEC as potential markers of microglial activation in humans. These data emphasise that TSPO expression in human myeloid cells is related to different phenomena than in mice, and that TSPO-PET signals in humans reflect the density of inflammatory cells rather than activation state.


Assuntos
Microglia , Doenças Neurodegenerativas , Animais , Camundongos , Doenças Neurodegenerativas/genética , Macrófagos , Células Mieloides , Deriva Genética
2.
Elife ; 112022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36515269

RESUMO

Homeostatic regulation is essential for stable neuronal function. Several synaptic mechanisms of homeostatic plasticity have been described, but the functional properties of synapses involved in homeostasis are unknown. We used longitudinal two-photon functional imaging of dendritic spine calcium signals in visual and retrosplenial cortices of awake adult mice to quantify the sensory deprivation-induced changes in the responses of functionally identified spines. We found that spines whose activity selectively correlated with intrinsic network activity underwent tumor necrosis factor alpha (TNF-α)-dependent homeostatic increases in their response amplitudes, but spines identified as responsive to sensory stimulation did not. We observed an increase in the global sensory-evoked responses following sensory deprivation, despite the fact that the identified sensory inputs did not strengthen. Instead, global sensory-evoked responses correlated with the strength of network-correlated inputs. Our results suggest that homeostatic regulation of global responses is mediated through changes to intrinsic network-correlated inputs rather than changes to identified sensory inputs thought to drive sensory processing.


Assuntos
Plasticidade Neuronal , Neurônios , Camundongos , Animais , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Homeostase/fisiologia , Sinapses/fisiologia , Privação Sensorial/fisiologia
3.
Proc Natl Acad Sci U S A ; 119(43): e2206083119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36269859

RESUMO

Genome-wide association studies (GWASs) have identified genetic loci associated with the risk of Alzheimer's disease (AD), but the molecular mechanisms by which they confer risk are largely unknown. We conducted a metabolome-wide association study (MWAS) of AD-associated loci from GWASs using untargeted metabolic profiling (metabolomics) by ultraperformance liquid chromatography-mass spectrometry (UPLC-MS). We identified an association of lactosylceramides (LacCer) with AD-related single-nucleotide polymorphisms (SNPs) in ABCA7 (P = 5.0 × 10-5 to 1.3 × 10-44). We showed that plasma LacCer concentrations are associated with cognitive performance and genetically modified levels of LacCer are associated with AD risk. We then showed that concentrations of sphingomyelins, ceramides, and hexosylceramides were altered in brain tissue from Abca7 knockout mice, compared with wild type (WT) (P = 0.049-1.4 × 10-5), but not in a mouse model of amyloidosis. Furthermore, activation of microglia increases intracellular concentrations of hexosylceramides in part through induction in the expression of sphingosine kinase, an enzyme with a high control coefficient for sphingolipid and ceramide synthesis. Our work suggests that the risk for AD arising from functional variations in ABCA7 is mediated at least in part through ceramides. Modulation of their metabolism or downstream signaling may offer new therapeutic opportunities for AD.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Doença de Alzheimer , Ceramidas , Animais , Camundongos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Ceramidas/metabolismo , Cromatografia Líquida , Estudo de Associação Genômica Ampla , Lactosilceramidas , Metaboloma , Camundongos Knockout , Esfingomielinas , Espectrometria de Massas em Tandem
4.
J Neuroinflammation ; 18(1): 73, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33731156

RESUMO

BACKGROUND: Astrocytes provide a vital support to neurons in normal and pathological conditions. In Alzheimer's disease (AD) brains, reactive astrocytes have been found surrounding amyloid plaques, forming an astrocytic scar. However, their role and potential mechanisms whereby they affect neuroinflammation, amyloid pathology, and synaptic density in AD remain unclear. METHODS: To explore the role of astrocytes on Aß pathology and neuroinflammatory markers, we pharmacologically ablated them in organotypic brain culture slices (OBCSs) from 5XFAD mouse model of AD and wild-type (WT) littermates with the selective astrocytic toxin L-alpha-aminoadipate (L-AAA). To examine the effects on synaptic circuitry, we measured dendritic spine number and size in OBCSs from Thy-1-GFP transgenic mice incubated with synthetic Aß42 or double transgenics Thy-1-GFP/5XFAD mice treated with LAAA or vehicle for 24 h. RESULTS: Treatment of OBCSs with L-AAA resulted in an increased expression of pro-inflammatory cytokine IL-6 in conditioned media of WTs and 5XFAD slices, associated with changes in microglia morphology but not in density. The profile of inflammatory markers following astrocytic loss was different in WT and transgenic cultures, showing reductions in inflammatory mediators produced in astrocytes only in WT sections. In addition, pharmacological ablation of astrocytes led to an increase in Aß levels in homogenates of OBCS from 5XFAD mice compared with vehicle controls, with reduced enzymatic degradation of Aß due to lower neprilysin and insulin-degrading enzyme (IDE) expression. Furthermore, OBSCs from wild-type mice treated with L-AAA and synthetic amyloid presented 56% higher levels of Aß in culture media compared to sections treated with Aß alone, concomitant with reduced expression of IDE in culture medium, suggesting that astrocytes contribute to Aß clearance and degradation. Quantification of hippocampal dendritic spines revealed a reduction in their density following L-AAA treatment in all groups analyzed. In addition, pharmacological ablation of astrocytes resulted in a decrease in spine size in 5XFAD OBCSs but not in OBCSs from WT treated with synthetic Aß compared to vehicle control. CONCLUSIONS: Astrocytes play a protective role in AD by aiding Aß clearance and supporting synaptic plasticity.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Astrócitos/efeitos dos fármacos , Vias Neurais/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Ácido 2-Aminoadípico/farmacologia , Doença de Alzheimer/patologia , Animais , Tamanho Celular/efeitos dos fármacos , Espinhas Dendríticas/efeitos dos fármacos , Encefalite/metabolismo , Encefalite/patologia , Humanos , Interleucina-6/metabolismo , Camundongos , Camundongos Transgênicos , Fragmentos de Peptídeos/metabolismo
5.
Cell Calcium ; 95: 102365, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33610083

RESUMO

The adult neocortex is not hard-wired but instead retains the capacity to reorganise across multiple spatial scales long into adulthood. Plastic reorganisation occurs at the level of mesoscopic sensory maps, functional neuronal assemblies and synaptic ensembles and is thought to be a critical feature of neuronal network function. Here, we describe a series of approaches that use calcium imaging to measure network reorganisation across multiple spatial scales in vivo. At the mesoscopic level, we demonstrate that sensory activity can be measured in animals undergoing longitudinal behavioural assessment involving automated touchscreen tasks. At the cellular level, we show that network dynamics can be longitudinally measured at both stable and transient functional assemblies. At the level of single synapses, we show that functional subcellular calcium imaging approaches can be used to measure synaptic ensembles of dendritic spines in vivo. Finally, we demonstrate that all three levels of imaging can be spatially related to local pathology in a preclinical rodent model of amyloidosis. We propose that multi-scale in vivo calcium imaging can be used to measure parallel plasticity processes operating across multiple spatial scales in both the healthy brain and preclinical models of disease.


Assuntos
Amiloidose/metabolismo , Cálcio/metabolismo , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Neocórtex/metabolismo , Rede Nervosa/metabolismo , Amiloidose/diagnóstico por imagem , Animais , Modelos Animais de Doenças , Feminino , Hipocampo/diagnóstico por imagem , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neocórtex/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem
6.
Neuron ; 96(4): 871-882.e5, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29107520

RESUMO

Synaptic scaling is a key homeostatic plasticity mechanism and is thought to be involved in the regulation of cortical activity levels. Here we investigated the spatial scale of homeostatic changes in spine size following sensory deprivation in a subset of inhibitory (layer 2/3 GAD65-positive) and excitatory (layer 5 Thy1-positive) neurons in mouse visual cortex. Using repeated in vivo two-photon imaging, we find that increases in spine size are tumor necrosis factor alpha (TNF-α) dependent and thus are likely associated with synaptic scaling. Rather than occurring at all spines, the observed increases in spine size are spatially localized to a subset of dendritic branches and are correlated with the degree of recent local spine loss within that branch. Using simulations, we show that such a compartmentalized form of synaptic scaling has computational benefits over cell-wide scaling for information processing within the cell.


Assuntos
Dendritos/fisiologia , Espinhas Dendríticas/fisiologia , Plasticidade Neuronal/fisiologia , Privação Sensorial/fisiologia , Animais , Simulação por Computador , Feminino , Homeostase/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/fisiologia , Fator de Necrose Tumoral alfa/fisiologia , Córtex Visual/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA