RESUMO
OBJECTIVES: Right ventricular (RV) failure is a leading cause of death in patients with congenital heart disease. RV failure is kept at bay during childhood. Limited proliferation of cardiomyocytes is present in the postnatal heart. We propose that cardiomyocyte proliferation improves RV adaptation to pressure load (PL). We studied adaptation in response to increased RV PL and the role of increased cardiomyocyte cell cycle activity (CCA) in rat pups growing into adulthood. METHODS: We induced RV PL at day of weaning in rats (3 weeks; 30-40 g) by pulmonary artery banding and followed rats into adulthood (300 g). We performed histological analyses and RNA sequencing analysis. To study the effects of increased cardiomyocyte cell cycle activity, we administered neuregulin-1 (NRG1), a growth factor involved in cardiac development. RESULTS: PL induced an increase in CCA, with subsequent decline of CCA (sham/PL at 4 weeks: 0.14%/0.83%; P = .04 and 8 weeks: 0.00%/0.00%; P = .484) and cardiac function (cardiac index: control/PL 4 weeks: 4.41/3.29; P = .468 and 8 weeks: 3.57/1.44; P = .024). RNA sequencing analysis revealed delayed maturation and increased CCA pathways. NRG1 stimulated CCA (PL vehicle/NRG1 at 2 weeks: 0.62%/2.28%; P = .003), improved cardiac function (cardiac index control vs vehicle/NRG1 at 2 weeks: 4.21 vs 3.07/4.17; P = .009/.705) and postponed fibrosis (control vs vehicle/NRG1 at 4 weeks: 1.66 vs 4.82%/2.97%; P = .009/.078) in RV PL rats during childhood. CONCLUSIONS: RV PL during growth induces a transient CCA increase. Further CCA stimulation improves cardiac function and delays fibrosis. This proof-of-concept study shows that stimulation of CCA can improve RV adaptation to PL in the postnatal developing heart and might provide a new approach to preserve RV function in patients with congenital heart disease.
Assuntos
Insuficiência Cardíaca , Disfunção Ventricular Direita , Ratos , Animais , Hipertrofia Ventricular Direita/metabolismo , Disfunção Ventricular Direita/etiologia , Disfunção Ventricular Direita/prevenção & controle , Disfunção Ventricular Direita/metabolismo , Pressão Ventricular/fisiologia , Neuregulina-1/genética , Neuregulina-1/metabolismo , Neuregulina-1/farmacologia , Função Ventricular Direita , Miócitos Cardíacos/metabolismo , Fibrose , Insuficiência Cardíaca/metabolismo , Ciclo Celular , Modelos Animais de DoençasRESUMO
Follistatin-like 1 (FSTL1) is a secreted glycoprotein displaying expression changes during development and disease, among which cardiovascular disease, cancer, and arthritis. The cardioprotective role of FSTL1 has been intensively studied over the last years, though its mechanism of action remains elusive. FSTL1 is involved in multiple signaling pathways and biological processes, including vascularization and regulation of the immune response, a feature that complicates its study. Binding to the DIP2A, TLR4 and BMP receptors have been shown, but other molecular partners probably exist. During cancer progression and rheumatoid arthritis, controversial data have been reported with respect to the proliferative, apoptotic, migratory, and inflammatory effects of FSTL1. This controversy might reside in the extensive post-transcriptional regulation of FSTL1. The FSTL1 primary transcript also encodes for a microRNA (miR-198) in primates and multiple microRNA-binding sites are present in the 3'UTR. The switch between expression of the FSTL1 protein and miR-198 is an important regulator of tumour metastasis and wound healing. The glycosylation state of FSTL1 is a determinant of biological activity, in cardiomyocytes the glycosylated form promoting proliferation and the non-glycosylated working anti-apoptotic. Moreover, the glycosylation state shows differences between species and tissues which might underlie the differences observed in in vitro studies. Finally, regulation at the level of protein secretion has been described.
Assuntos
Proteínas Relacionadas à Folistatina/metabolismo , Animais , Apoptose/fisiologia , Artrite Reumatoide/metabolismo , Humanos , MicroRNAs/metabolismo , Neoplasias/metabolismo , Transdução de Sinais/fisiologia , Cicatrização/fisiologiaRESUMO
Vertebrate organ development relies on the precise spatiotemporal orchestration of proliferation rates and differentiation patterns in adjacent tissue compartments. The underlying integration of patterning and cell cycle control during organogenesis is insufficiently understood. Here, we have investigated the function of the patterning T-box transcription factor gene Tbx2 in lung development. We show that lungs of Tbx2-deficient mice are markedly hypoplastic and exhibit reduced branching morphogenesis. Mesenchymal proliferation was severely decreased, while mesenchymal differentiation into fibrocytes was prematurely induced. In the epithelial compartment, proliferation was reduced and differentiation of alveolar epithelial cells type 1 was compromised. Prior to the observed cellular changes, canonical Wnt signaling was downregulated, and Cdkn1a (p21) and Cdkn1b (p27) (two members of the Cip/Kip family of cell cycle inhibitors) were strongly induced in the Tbx2-deficient lung mesenchyme. Deletion of both Cdkn1a and Cdkn1b rescued, to a large degree, the growth deficits of Tbx2-deficient lungs. Prolongation of Tbx2 expression into adulthood led to hyperproliferation and maintenance of mesenchymal progenitor cells, with branching morphogenesis remaining unaffected. Expression of Cdkn1a and Cdkn1b was ablated from the lung mesenchyme in this gain-of-function setting. We further show by ChIP experiments that Tbx2 directly binds to Cdkn1a and Cdkn1b loci in vivo, defining these two genes as direct targets of Tbx2 repressive activity in the lung mesenchyme. We conclude that Tbx2-mediated regulation of Cdkn1a and Cdkn1b represents a crucial node in the network integrating patterning information and cell cycle regulation that underlies growth, differentiation, and branching morphogenesis of this organ.
Assuntos
Inibidor de Quinase Dependente de Ciclina p21 , Inibidor de Quinase Dependente de Ciclina p27 , Pulmão , Proteínas com Domínio T , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Células Epiteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Pulmão/crescimento & desenvolvimento , Pulmão/metabolismo , Mesoderma , Camundongos , Morfogênese , Transdução de Sinais , Proteínas com Domínio T/deficiência , Proteínas com Domínio T/genéticaRESUMO
Cardiovascular diseases are the leading cause of mortality, morbidity, hospitalization and impaired quality of life. In most, if not all, pathologic cardiac ischemia ensues triggering a succession of events leading to massive death of cardiomyocytes, fibroblast and extracellular matrix accumulation, cardiomyocyte hypertrophy which culminates in heart failure and eventually death. Though current pharmacological treatment is able to delay the succession of events and as a consequence the development of heart failure, the only currently available and effective treatment of end-stage heart failure is heart transplantation. However, donor heart availability and immunorejection upon transplantation seriously limit the applicability. Cardiac regeneration could provide a solution, making real a dream of both scientist and clinician in the previous century and ending an ongoing challenge for this century. In this review, we present a basic overview of the various cell types that have been used in both the clinical and research setting with respect to myocardial differentiation.
Assuntos
Insuficiência Cardíaca/terapia , Coração/fisiologia , Regeneração/fisiologia , Transplante de Medula Óssea/métodos , Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/citologia , Humanos , Miócitos Cardíacos/citologia , Transplante de Células-Tronco/métodosRESUMO
Tbx3, a member of the conserved family of T-box developmental transcription factors, is a transcriptional repressor required during cardiogenesis for the formation and specification of the sinoatrial node, the pacemaker of the heart. Both the TBX3 and the highly related TBX2 genes are also associated with several cancers, most likely as a consequence of their powerful anti-senescence properties mediated via suppression p14(Arf) and p21(CIP) expression. In melanoma, the TBX2 gene is frequently amplified and inhibition of Tbx2 function leads to senescence and up-regulation of p21(CIP), a Tbx2 target gene. Tbx3 + 2a is a splice variant containing an extra 20 amino acids encoded by exon 2a inserted into the highly conserved T-box DNA-binding domain. We find here that Tbx3 + 2a is evolutionary conserved and that similar insertions are largely absent from the T-box domains of other T-box factors. Tbx3 + 2a has been reported to lack DNA-binding ability and act as a functional antagonist of Tbx3. By contrast, we now demonstrate that both Tbx3 and Tbx3 + 2a bind the consensus T-element, the p21(CIP1) promoter, and the Nppa cardiac target gene. Both isoforms also function as repressors of p21(CIP1) and Nppa promoter activity and interact with homeobox factor Nkx2-5. When ectopically expressed in the embryonic heart of mice, Tbx3 and Tbx3 + 2a both suppressed chamber formation and repressed expression of cardiac chamber markers Nppa and Cx40. The results suggest that in the assays used, Tbx3 and Tbx3 + 2a are functionally equivalent and that like Tbx2, Tbx3 may also function as an anti-senescence factor in melanoma.
Assuntos
Processamento Alternativo/genética , Sequência Conservada , Éxons , Proteínas com Domínio T/genética , Sequência de Aminoácidos , Animais , Fator Natriurético Atrial , Linhagem Celular , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , DNA Recombinante , Proteína Homeobox Nkx-2.5 , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Peptídeo Natriurético Tipo C/genética , Regiões Promotoras Genéticas , Precursores de Proteínas/genética , Alinhamento de Sequência , Proteínas com Domínio T/metabolismo , Fatores de Transcrição/metabolismoRESUMO
While the function of most small signaling domains is confined to binary ligand interactions, the peroxisomal Pex13p SH3 domain has the unique capacity of binding to two different ligands, Pex5p and Pex14p. We have used this domain as a model to decipher its structurally independent ligand binding sites. By the combined use of X-ray crystallography, NMR spectroscopy, and circular dichroism, we show that the two ligands bind in unrelated conformations to patches located at opposite surfaces of this SH3 domain. Mutations in the Pex13p SH3 domain that abolish interactions within the Pex13p-Pex5p interface specifically impair PTS1-dependent protein import into yeast peroxisomes.