Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35709116

RESUMO

Advances in magnetic materials have enabled the development of new therapeutic agents that can be localized by external magnetic fields. These agents offer a potential means of improving treatment targeting and reducing the toxicity-related side effects associated with systemic delivery. Achieving sufficiently high magnetic fields at clinically relevant depths in vivo, however, remains a challenge. Similarly, there is a need for techniques for real-time monitoring that do not rely on magnetic resonance imaging (MRI). Here, we present a hand-held device to meet these requirements, combining an array of permanent magnets and a thin 64-element capacitive micromachined ultrasonic transducer (CMUT) interfaced to a real-time imaging system. Drug carrier localization was assessed by measuring the terminal velocity of magnetic microbubbles in a column of fluid above the magnetic array. It was found that the magnetic pull force was sufficient to overcome buoyancy at equivalent tissue depths of at least 35 mm and that the median terminal velocity ranged from 0.7 to 20 [Formula: see text]/s over the distances measured. A Monte Carlo study was performed to estimate capture effectiveness in tumor microvessels over a range of different tissue depths and flow rates. Finally, B-mode and contrast-enhanced ultrasound (CEUS) imaging were demonstrated using a gel flow phantom containing a 1.6-mm diameter vessel. Real-time monitoring provided visual confirmation of retention of magnetic microbubbles along the vessel wall at a flow rate of 0.5 mL/min. These results indicate that the system can successfully retain and image magnetic microbubbles at tissue depths and flow rates relevant for clinical applications such as molecular ultrasound imaging of atherosclerosis, sonodynamic and antimetabolite cancer therapy, and clot dissolution via sonothrombolysis.


Assuntos
Microbolhas , Transdutores , Imagens de Fantasmas , Ultrassom , Ultrassonografia/métodos
2.
J Control Release ; 317: 23-33, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31733295

RESUMO

Recent pre-clinical studies have demonstrated the potential of combining chemotherapy and sonodynamic therapy for the treatment of pancreatic cancer. Oxygen-loaded magnetic microbubbles have been explored as a targeted delivery vehicle for this application. Despite preliminary positive results, a previous study identified a significant practical challenge regarding the co-alignment of the magnetic and ultrasound fields. The aim of this study was to determine whether this challenge could be addressed through the use of a magnetic-acoustic device (MAD) combining a magnetic array and ultrasound transducer in a single unit, to simultaneously concentrate and activate the microbubbles at the target site. in vitro experiments were performed in tissue phantoms and followed by in vivo treatment of xenograft pancreatic cancer (BxPC-3) tumours in a murine model. In vitro, a 1.4-fold (p < .01) increase in the deposition of a model therapeutic payload within the phantom was achieved using the MAD compared to separate magnetic and ultrasound devices. In vivo, tumours treated with the MAD had a 9% smaller mean volume 8 days after treatment, while tumours treated with separate devices or microbubbles alone were respectively 45% and 112% larger. This substantial and sustained decrease in tumour volume suggests that the proposed drug delivery approach has the potential to be an effective neoadjuvant therapy for pancreatic cancer patients.


Assuntos
Microbolhas , Neoplasias Pancreáticas , Acústica , Animais , Sistemas de Liberação de Medicamentos , Humanos , Fenômenos Magnéticos , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico
3.
Lab Chip ; 18(17): 2593-2603, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30027969

RESUMO

We report the design and characterization of a lateral and vertical hydrodynamic focusing feature for whole cell detection on a miniaturized flow cytometer. The developed system, based on magnetic sensing, incorporates spin valve sensors on the bottom of the microfluidic channels that detect cells labeled with magnetic beads. An adaptable 3D hydrodynamic focusing system was developed that pushes labeled cells towards the bottom of the microchannel, closer to the sensors, allowing increased signal amplitude for cells labeled with magnetic beads and enhanced discrimination of labeled cells. Fluorescence microscopy indicates that the lateral and vertical hydrodynamic focusing effect was adequately implemented, consistent with simulation predictions. The sensitivity of the system to detect labeled cells was improved by at least two-fold. By estimating the coverage of magnetic beads on cells, the signal from labeled cells could be predicted using a mathematical model, which also demonstrated the sensitivity of the signal to the height of the cells relative to the sensor. The system is versatile allowing interchangeable flow rates for cells with different diameters.


Assuntos
Contagem de Células/instrumentação , Citometria de Fluxo/instrumentação , Dispositivos Lab-On-A-Chip , Fenômenos Magnéticos , Linhagem Celular Tumoral , Desenho de Equipamento , Humanos , Hidrodinâmica , Fatores de Tempo
4.
J Control Release ; 262: 192-200, 2017 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-28764995

RESUMO

Magnetically responsive microbubbles (MagMBs), consisting of an oxygen gas core and a phospholipid coating functionalised with Rose Bengal (RB) and/or 5-fluorouracil (5-FU), were assessed as a delivery vehicle for the targeted treatment of pancreatic cancer using combined antimetabolite and sonodynamic therapy (SDT). MagMBs delivering the combined 5-FU/SDT treatment produced a reduction in cell viability of over 50% when tested against a panel of four pancreatic cancer cell lines in vitro. Intravenous administration of the MagMBs to mice bearing orthotopic human xenograft BxPC-3 tumours yielded a 48.3% reduction in tumour volume relative to an untreated control group (p<0.05) when the tumour was exposed to both external magnetic and ultrasound fields during administration of the MagMBs. In contrast, application of an external ultrasound field alone resulted in a 27% reduction in tumour volume. In addition, activated caspase and BAX protein levels were both observed to be significantly elevated in tumours harvested from animals treated with the MagMBs in the presence of magnetic and ultrasonic fields when compared to expression of those proteins in tumours from either the control or ultrasound field only groups (p<0.05). These results suggest MagMBs have considerable potential as a platform to enable the targeted delivery of combined sonodynamic/antimetabolite therapy in pancreatic cancer.


Assuntos
Antimetabólitos Antineoplásicos/administração & dosagem , Fluoruracila/administração & dosagem , Nanopartículas Metálicas/administração & dosagem , Microbolhas , Sonicação , Animais , Antimetabólitos Antineoplásicos/química , Avidina/administração & dosagem , Avidina/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Compostos Férricos/administração & dosagem , Compostos Férricos/química , Fluoruracila/química , Humanos , Fenômenos Magnéticos , Nanopartículas Metálicas/química , Camundongos SCID , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Rosa Bengala/administração & dosagem , Rosa Bengala/química , Carga Tumoral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA