Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(46): e2312677120, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37931101

RESUMO

We have previously reported that the cortical bone thinning seen in mice lacking the Wnt signaling antagonist Sfrp4 is due in part to impaired periosteal apposition. The periosteum contains cells which function as a reservoir of stem cells and contribute to cortical bone expansion, homeostasis, and repair. However, the local or paracrine factors that govern stem cells within the periosteal niche remain elusive. Cathepsin K (Ctsk), together with additional stem cell surface markers, marks a subset of periosteal stem cells (PSCs) which possess self-renewal ability and inducible multipotency. Sfrp4 is expressed in periosteal Ctsk-lineage cells, and Sfrp4 global deletion decreases the pool of PSCs, impairs their clonal multipotency for differentiation into osteoblasts and chondrocytes and formation of bone organoids. Bulk RNA sequencing analysis of Ctsk-lineage PSCs demonstrated that Sfrp4 deletion down-regulates signaling pathways associated with skeletal development, positive regulation of bone mineralization, and wound healing. Supporting these findings, Sfrp4 deletion hampers the periosteal response to bone injury and impairs Ctsk-lineage periosteal cell recruitment. Ctsk-lineage PSCs express the PTH receptor and PTH treatment increases the % of PSCs, a response not seen in the absence of Sfrp4. Importantly, in the absence of Sfrp4, PTH-dependent increase in cortical thickness and periosteal bone formation is markedly impaired. Thus, this study provides insights into the regulation of a specific population of periosteal cells by a secreted local factor, and shows a central role for Sfrp4 in the regulation of Ctsk-lineage periosteal stem cell differentiation and function.


Assuntos
Osteogênese , Nicho de Células-Tronco , Camundongos , Animais , Catepsina K/metabolismo , Periósteo/metabolismo , Diferenciação Celular/genética , Via de Sinalização Wnt , Proteínas Proto-Oncogênicas/metabolismo
2.
JCI Insight ; 8(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37870958

RESUMO

Osteocytes express parathyroid hormone (PTH)/PTH-related protein (PTHrP) receptors and respond to the PTHrP analog abaloparatide (ABL) and to the PTH 1-34 fragment teriparatide (TPTD), which are used to treat osteoporosis. Several studies indicate overlapping but distinct skeletal responses to ABL or TPTD, but their effects on cortical bone may differ. Little is known about their differential effects on osteocytes. We compared cortical osteocyte and skeletal responses to ABL and TPTD in sham-operated and ovariectomized mice. Administered 7 weeks after ovariectomy for 4 weeks at a dose of 40 µg/kg/d, TPTD and ABL had similar effects on trabecular bone, but ABL showed stronger effects in cortical bone. In cortical osteocytes, both treatments decreased lacunar area, reflecting altered peri-lacunar remodeling favoring matrix accumulation. Osteocyte RNA-Seq revealed that several genes and pathways were altered by ovariectomy and affected similarly by TPTD and ABL. Notwithstanding, several signaling pathways were uniquely regulated by ABL. Thus, in mice, TPTD and ABL induced a positive osteocyte peri-lacunar remodeling balance, but ABL induced stronger cortical responses and affected the osteocyte transcriptome differently. We concluded that ABL affected the cortical osteocyte transcriptome in a manner subtly different from TPTD, resulting in more beneficial remodeling/modeling changes and homeostasis of the cortex.


Assuntos
Proteína Relacionada ao Hormônio Paratireóideo , Teriparatida , Feminino , Camundongos , Animais , Teriparatida/farmacologia , Teriparatida/uso terapêutico , Proteína Relacionada ao Hormônio Paratireóideo/farmacologia , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Osteócitos/metabolismo , Transcriptoma , Estrogênios/farmacologia
3.
Elife ; 122023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37159501

RESUMO

Conditional deletion of the PTH1R in mesenchymal progenitors reduces osteoblast differentiation, enhances marrow adipogenesis, and increases zinc finger protein 467 (Zfp467) expression. In contrast, genetic loss of Zfp467 increased Pth1r expression and shifts mesenchymal progenitor cell fate toward osteogenesis and higher bone mass. PTH1R and ZFP467 could constitute a feedback loop that facilitates PTH-induced osteogenesis and that conditional deletion of Zfp467 in osteogenic precursors would lead to high bone mass in mice. Prrx1Cre; Zfp467fl/fl but not AdipoqCre; Zfp467fl/fl mice exhibit high bone mass and greater osteogenic differentiation similar to the Zfp467-/- mice. qPCR results revealed that PTH suppressed Zfp467 expression primarily via the cyclic AMP/PKA pathway. Not surprisingly, PKA activation inhibited the expression of Zfp467 and gene silencing of Pth1r caused an increase in Zfp467 mRNA transcription. Dual fluorescence reporter assays and confocal immunofluorescence demonstrated that genetic deletion of Zfp467 resulted in higher nuclear translocation of NFκB1 that binds to the P2 promoter of the Pth1r and increased its transcription. As expected, Zfp467-/- cells had enhanced production of cyclic AMP and increased glycolysis in response to exogenous PTH. Additionally, the osteogenic response to PTH was also enhanced in Zfp467-/- COBs, and the pro-osteogenic effect of Zfp467 deletion was blocked by gene silencing of Pth1r or a PKA inhibitor. In conclusion, our findings suggest that loss or PTH1R-mediated repression of Zfp467 results in a pathway that increases Pth1r transcription via NFκB1 and thus cellular responsiveness to PTH/PTHrP, ultimately leading to enhanced bone formation.


Assuntos
Adipogenia , Osteogênese , Animais , Camundongos , Diferenciação Celular , AMP Cíclico/metabolismo , Osteoblastos/metabolismo , Receptor Tipo 1 de Hormônio Paratireóideo/genética , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo
4.
Curr Osteoporos Rep ; 20(2): 153-161, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35182301

RESUMO

PURPOSE OF REVIEW: Periosteal apposition and endosteal remodeling regulate cortical bone expansion and thickness, both critical determinants of bone strength. Yet, the cellular characteristics and local or paracrine factors that regulate the periosteum and endosteum remain largely elusive. Here we discuss novel insights in cortical bone growth, expansion, and homeostasis, provided by the study of Secreted Frizzled Receptor Protein 4 (Sfrp4), a decoy receptor for Wnt ligands. RECENT FINDINGS: SFRP4 loss-of function mutations cause Pyle disease, a rare skeletal disorder characterized by cortical bone thinning and increased fragility fractures despite increased trabecular bone density. On the endosteal surface, Sfrp4-mediated repression of non-canonical Wnt signaling regulates endosteal resorption. On the periosteum, Sfrp4 identifies as a critical functional mediator of periosteal stem cell/progenitor expansion and differentiation. Analysis of signaling pathways regulating skeletal stem cells/progenitors provides an opportunity to advance our understanding of the mechanisms involved in cortical bone biology.


Assuntos
Osso Cortical , Receptores Frizzled , Biologia , Diferenciação Celular , Humanos , Periósteo , Proteínas Proto-Oncogênicas
5.
Surg Endosc ; 36(9): 6984-6996, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35226161

RESUMO

BACKGROUND: Bariatric surgery has been shown to result in weight loss, improved hemoglobin A1C, and decreased mortality but can also lead to bone loss and increased fracture rates. Serum IGFBP-2 is elevated in patients after bariatric surgery and although it may lead to improved blood glucose, may also drive bone resorption, and inhibit IGF-I action. This study tested the hypothesis that Igfbp2-/- mice were acutely protected from bone loss after vertical sleeve gastrectomy (VSG). METHODS: Thirty-four mice, 17 Igfbp2-/- and 17 + / + underwent a hand-sewn VSG or sham surgery, at 16 weeks of age. Mice were harvested at 20 weeks of age. DXA was measured for body composition, areal bone mineral density (aBMD), areal bone mineral content (aBMC), femoral bone mineral density (fBMD), and femoral bone mineral content (fBMC) at 15, 18, and 20 weeks of age. Micro-computed tomography and serum ELISA assays were measured and analyzed at 20 weeks of age. RESULTS: Both Igfbp2-/- and + / + mice lost significant weight (P = 0.0251, P = 0.0003, respectively) and total fat mass (P = 0.0082, P = 0.0004, respectively) at 4 weeks after VSG. Igfbp2+/+ mice lost significant aBMD, fBMD, fBMC, trabecular BMD, trabecular BV/TV and cortical tissue mineral density (P = 0.0150, P = 0.0313, P = 0.0190, P = 0.0072, and 0.0320 respectively). The Igfbp2-/- mice did not show significant bone loss in these parameters nor in trabecular BV/TV. Both Igfbp2-/- and + / + mice had less cortical bone area (P = 0.0181, P = < .00001), cortical area over total area (P = 0.0085, P = 0.0007), and cortical thickness (P = 0.0050, P = < 0.0001), respectively. Igfbp2+/+ mice demonstrated significantly lower polar, minimum, and maximum moments of inertia (P = 0.0031, P = 0.0239, and P = 0.0037, respectively). Igfbp2+/+ had significantly higher levels of IGFBP-2 at 2 weeks postoperatively after VSG (P = 0.035), and elevated levels of CTx and P1NP (P = 0.0127, P = 0.0058, respectively). CONCLUSIONS: Igfbp2-/- mice were protected against trabecular bone loss and had attenuated cortical bone loss 4 weeks after VSG.


Assuntos
Osso Esponjoso , Gastrectomia/efeitos adversos , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina , Osteoporose/genética , Animais , Densidade Óssea , Osso Esponjoso/diagnóstico por imagem , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Camundongos , Osteoporose/patologia , Microtomografia por Raio-X
6.
Connect Tissue Res ; 63(2): 97-111, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-31868022

RESUMO

Introduction: With age, the number of adipocytes and osteoclasts increases, the number of osteoblasts decreases, and mechano-adaptation is impaired.Objectives: Using marrow aspiration, which has a known osteogenic effect in young mice, we sought to recruit osteoblast progenitors to mediate the mechano-adaptive response to in vivo tibial loading.Methods: First, we assessed bone formation and marrow adiposity in the tibiae of old mice (>20 months) sacrificed 1, 2, and 4 weeks after unilateral marrow aspiration. Then, we examined the effects of marrow aspiration on mechano-adaptation in aged mice using tibial loading.Results: Two weeks after aspiration, aspirated tibiae had more bone than contralateral tibiae due to the formation of bone in the medullary canal. Two weeks and four weeks after marrow aspiration, the volume of marrow adipose tissue was higher in the aspirated tibiae, compared to contralateral tibiae. Histomorphometry indicated that aspiration increased non-periosteal (endosteal, intracortical, intramedullary) bone formation, compared to the contralateral tibia.  Mice with marrow aspiration had reduced periosteal bone formation in the contralateral tibia, compared to mice that had loading alone. Loading-induced periosteal bone formation was higher in mice that had loading alone, compared to mice that had aspiration + loading, indicating that aspiration further reduced the mechano-adaptive response.Conclusion: These data demonstrate that, in old mice, bone forms in the medullary canal following aspiration. Adiposity is increased following marrow aspiration, and periosteal mechano-adaptation is reduced.


Assuntos
Medula Óssea , Osteogênese , Tecido Adiposo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Osteogênese/fisiologia , Tíbia
7.
Nat Commun ; 12(1): 2450, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33893301

RESUMO

Infertile men have few treatment options. Here, we demonstrate that the transmembrane receptor activator of NF-kB ligand (RANKL) signaling system is active in mouse and human testis. RANKL is highly expressed in Sertoli cells and signals through RANK, expressed in most germ cells, whereas the RANKL-inhibitor osteoprotegerin (OPG) is expressed in germ and peritubular cells. OPG treatment increases wild-type mouse sperm counts, and mice with global or Sertoli-specific genetic suppression of Rankl have increased male fertility and sperm counts. Moreover, RANKL levels in seminal fluid are high and distinguishes normal from infertile men with higher specificity than total sperm count. In infertile men, one dose of Denosumab decreases RANKL seminal fluid concentration and increases serum Inhibin-B and anti-Müllerian-hormone levels, but semen quality only in a subgroup. This translational study suggests that RANKL is a regulator of male reproductive function, however, predictive biomarkers for treatment-outcome requires further investigation in placebo-controlled studies.


Assuntos
Fertilidade/fisiologia , Ligante RANK/metabolismo , Análise do Sêmen/métodos , Células de Sertoli/metabolismo , Espermatozoides/metabolismo , Animais , Hormônio Antimülleriano/sangue , Hormônio Antimülleriano/metabolismo , Denosumab/farmacologia , Fertilidade/efeitos dos fármacos , Humanos , Inibinas/antagonistas & inibidores , Inibinas/sangue , Inibinas/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Osteoprotegerina/farmacologia , Ligante RANK/antagonistas & inibidores , Ligante RANK/genética , Sêmen/efeitos dos fármacos , Sêmen/metabolismo , Células de Sertoli/efeitos dos fármacos , Contagem de Espermatozoides , Espermatozoides/citologia , Espermatozoides/efeitos dos fármacos
8.
Aging Cell ; 20(3): e13313, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33561324

RESUMO

Pregnancy-associated plasma protein-A (PAPP-A) is a secreted metalloprotease that increases insulin-like growth factor (IGF) availability by cleaving IGF-binding proteins. Reduced IGF signaling extends longevity in multiple species, and consistent with this, PAPP-A deletion extends lifespan and healthspan; however, the mechanism remains unclear. To clarify PAPP-A's role, we developed a PAPP-A neutralizing antibody and treated adult mice with it. Transcriptomic profiling across tissues showed that anti-PAPP-A reduced IGF signaling and extracellular matrix (ECM) gene expression system wide. The greatest reduction in IGF signaling occurred in the bone marrow, where we found reduced bone, marrow adiposity, and myelopoiesis. These diverse effects led us to search for unifying mechanisms. We identified mesenchymal stromal cells (MSCs) as the source of PAPP-A in bone marrow and primary responders to PAPP-A inhibition. Mice treated with anti-PAPP-A had reduced IGF signaling in MSCs and dramatically decreased MSC number. As MSCs are (1) a major source of ECM and the progenitors of ECM-producing fibroblasts, (2) the originating source of adult bone, (3) regulators of marrow adiposity, and (4) an essential component of the hematopoietic niche, our data suggest that PAPP-A modulates bone marrow homeostasis by potentiating the number and activity of MSCs. We found that MSC-like cells are the major source of PAPP-A in other tissues also, suggesting that reduced MSC-like cell activity drives the system-wide reduction in ECM gene expression due to PAPP-A inhibition. Dysregulated ECM production is associated with aging and drives age-related diseases, and thus, this may be a mechanism by which PAPP-A deficiency enhances longevity.


Assuntos
Homeostase , Longevidade , Células-Tronco Mesenquimais/metabolismo , Proteína Plasmática A Associada à Gravidez/antagonistas & inibidores , Animais , Anticorpos Neutralizantes/metabolismo , Medula Óssea/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Camundongos , Modelos Biológicos , Mielopoese , Osteoblastos/metabolismo , Osteogênese , Proteína Plasmática A Associada à Gravidez/metabolismo , Transdução de Sinais , Somatomedinas/metabolismo
9.
Bone ; 144: 115801, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33338664

RESUMO

Disuse osteoporosis can result from prolonged bed rest, paralysis, casts, braces, fractures and other conditions. Abaloparatide (ABL) is a PTHrP analog that increases bone density and strength by stimulating osteogenesis with limited effects on bone resorption. We examined skeletal responses to abaloparatide in young adult male rats with normal weight-bearing and with hindlimb unloading via a pelvic harness. Rats were allocated to four groups (10-12 per group): normal weight-bearing plus vehicle treatment (CON-VEH), normal weight-bearing plus ABL treatment (CON-ABL), hindlimb-unloading plus vehicle (HLU-VEH), or hindlimb-unloading plus ABL (HLU-ABL). Rats received ABL (25 µg/kg/day, s.c.) or vehicle throughout the 28-day unloading period and were then sacrificed, at which time HLU-VEH rats exhibited reduced bone formation and significant deficits in tibial, femoral, and vertebral bone mass compared with CON-VEH. ABL treatment increased serum osteocalcin in CON and HLU animals while having no effect on the osteoclast marker TRACP-5b. Longitudinal peripheral quantitative computed tomography (pQCT) indicated that ABL increased trabecular and cortical bone mass in the tibia. ABL was also associated with improved trabecular and cortical bone mass and architectural parameters at the femur, tibia, and vertebrae by µCT. Tibial histomorphometry indicated increased trabecular and endocortical bone formation with HLU-ABL versus HLU-VEH and with CON-ABL versus CON-VEH, and ABL was also associated with lower trabecular and endocortical osteoclast surfaces. Vertebral finite element analysis indicated higher ultimate load and stiffness for CON-ABL versus CON-VEH and for HLU-ABL versus HLU-VEH. In summary, ABL was associated with improved trabecular and cortical bone density and architecture in normal weight-bearing and hindlimb-unloaded rats, with higher bone formation and no difference in bone resorption. ABL was also associated with improved bone biomechanical parameters. These results provide rationale for investigating the ability of abaloparatide to prevent or treat disuse osteoporosis in humans.


Assuntos
Densidade Óssea , Reabsorção Óssea , Animais , Reabsorção Óssea/tratamento farmacológico , Elevação dos Membros Posteriores , Masculino , Osteogênese , Proteína Relacionada ao Hormônio Paratireóideo , Ratos , Microtomografia por Raio-X
10.
Bone ; 144: 115832, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33359894

RESUMO

Conditional deletion of the PTH receptor (Pth1r) in mesenchymal progenitors reduces osteoblast differentiation and bone mass while enhancing adipogenesis and bone marrow adipose tissue. Mechanistically, PTH suppresses the expression of Zfp467, a pro-adipogenic zinc finger transcription factor. Consequently, Pth1r deficiency in mesenchymal progenitors leads to increased Zfp467 expression. Based on these observations, we hypothesized that genetic loss of Zfp467 would lead to a shift in marrow progenitor cell fate towards osteogenesis and increased bone mass. To test this hypothesis, we generated Zfp467-/- mice. Zfp467-/- mice (-/-) were significantly smaller than Zfp467+/+ mice (+/+). µCT showed significantly higher trabecular bone and cortical bone area in -/- vs. +/+, and histomorphometry showed higher structural and dynamic formation parameters in -/- mice vs. +/+. Femoral gene expression including Alpl, Sp7, and Acp5 were increased in -/-mice, whereas Adiponectin, Cebpa, Lepr, and Ppraγ mRNA were lower in -/- mice. Similarly, Fabp4 and Lep in the inguinal depot were also decreased in -/- mice. Moreover, marrow adipocyte numbers were reduced in -/- vs +/+ mice (p<0.007). In vitro, COBs and BMSCs-/- showed more positive ALP and Alizarin Red staining and a decrease in ORO droplets. Pth1r mRNA and protein levels were increased in COBs and BMSCs from -/- mice vs +/+ (p<0.02 for each parameter, -/- vs. +/+). -/- cells also exhibited enhanced endogenous levels of cAMP vs. control cells. Moreover, in an ovariectomy (OVX) mouse model, Zfp467-/- mice had significantly lower fat mass but similar bone mass compared to OVX +/+ mice. In contrast, in a high fat diet (HFD) mouse model, in addition to reduced adipocyte volume and adipogenesis related gene expression in both peripheral and bone marrow fat tissue, greater osteoblast number and higher osteogenesis related gene expression were also observed in -/- HFD mice vs. +/+ HFD mice. Taken together, these results demonstrate that ZFP467 negatively influences skeletal homeostasis and favors adipogenesis. Global deletion of Zfp467 increases PTHR1, cAMP and bone turnover, hence its repression is a component of PTH signaling and its regulation. These data support a critical role for Zfp467 in early lineage allocation and provide a novel potential mechanism by which PTH acts in an anabolic manner on the bone remodeling unit.


Assuntos
Adipogenia , Osteogênese , Adipócitos , Adipogenia/genética , Animais , Medula Óssea , Células da Medula Óssea , Osso Esponjoso , Diferenciação Celular , Feminino , Camundongos , Osteoblastos , Osteogênese/genética
11.
Stem Cells ; 38(6): 769-781, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32053258

RESUMO

Bone remodeling and regeneration are dependent on resident stem/progenitor cells with the ability to replenish mature osteoblasts and repair the skeleton. Using lineage tracing approaches, we identified a population of Dmp1+ cells that reside within cortical bone and are distinct from osteocytes. Our aims were to characterize this stromal population of transcortical perivascular cells (TPCs) in their resident niche and evaluate their osteogenic potential. To distinguish this population from osteoblasts/osteocytes, we crossed mice containing inducible DMP1CreERT2/Ai9 Tomato reporter (iDMP/T) with Col2.3GFP reporter (ColGFP), a marker of osteoblasts and osteocytes. We observed iDMP/T+;ColGFP- TPCs within cortical bone following tamoxifen injection. These cells were perivascular and located within transcortical channels. Ex vivo bone outgrowth cultures showed TPCs migrated out of the channels onto the plate and expressed stem cell markers such as Sca1, platelet derived growth factor receptor beta (PDGFRß), and leptin receptor. In a cortical bone transplantation model, TPCs migrate from their vascular niche within cortical bone and contribute to new osteoblast formation and bone tube closure. Treatment with intermittent parathyroid hormone increased TPC number and differentiation. TPCs were unable to differentiate into adipocytes in the presence of rosiglitazone in vitro or in vivo. Altogether, we have identified and characterized a novel stromal lineage-restricted osteoprogenitor that is associated with transcortical vessels of long bones. Functionally, we have demonstrated that this population can migrate out of cortical bone channels, expand, and differentiate into osteoblasts, therefore serving as a source of progenitors contributing to new bone formation.


Assuntos
Osso e Ossos/fisiopatologia , Osteoblastos/metabolismo , Osteócitos/metabolismo , Animais , Diferenciação Celular , Humanos , Camundongos
12.
Bone ; 132: 115209, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31866495

RESUMO

Osteoclasts are multinuclear cells which maintain bone homeostasis by resorbing bone. During bone resorption, osteoclasts attach to the bone matrix via a sealing zone formed by an actin ring. Rous sarcoma oncogene (Src) is essential for actin ring formation and bone resorption. Recently, we demonstrated that plectin, a cytolinker protein, is a Src-binding protein in osteoclasts. However, the function of plectin in osteoclasts remains unknown. In this study, we demonstrated that shRNA knockdown of plectin in RAW 264.7 cells resulted in tartrate resistant acid phosphatase positive multinuclear cells (TRAP (+) MNCs) with impaired actin ring formation and bone resorption activity. Moreover, we found that in plectin-silenced TRAP (+) MNCs, Src and protein tyrosine kinase 2 beta (Pyk2), two critical kinases in osteoclastic bone resorption, were inactivated and microtubule polarity was disturbed. These results suggest that plectin plays a critical role in osteoclast biology by acting as a scaffold to facilitate Src and Pyk2 activation during microtubule organization.


Assuntos
Reabsorção Óssea , Quinase 2 de Adesão Focal , Células Cultivadas , Humanos , Microtúbulos , Osteoclastos , Plectina/genética
13.
Proc Natl Acad Sci U S A ; 116(28): 14138-14143, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31239337

RESUMO

Loss-of-function mutations in the Wnt inhibitor secreted frizzled receptor protein 4 (SFRP4) cause Pyle's disease (OMIM 265900), a rare skeletal disorder characterized by wide metaphyses, significant thinning of cortical bone, and fragility fractures. In mice, we have shown that the cortical thinning seen in the absence of Sfrp4 is associated with decreased periosteal and endosteal bone formation and increased endocortical resorption. While the increase in Rankl/Opg in cortical bone of mice lacking Sfrp4 suggests an osteoblast-dependent effect on endocortical osteoclast (OC) activity, whether Sfrp4 can cell-autonomously affect OCs is not known. We found that Sfrp4 is expressed during bone marrow macrophage OC differentiation and that Sfrp4 significantly suppresses the ability of early and late OC precursors to respond to Rankl-induced OC differentiation. Sfrp4 deletion in OCs resulted in activation of canonical Wnt/ß-catenin and noncanonical Wnt/Ror2/Jnk signaling cascades. However, while inhibition of canonical Wnt/ß-catenin signaling did not alter the effect of Sfrp4 on OCgenesis, blocking the noncanonical Wnt/Ror2/Jnk cascade markedly suppressed its regulation of OC differentiation in vitro. Importantly, we report that deletion of Ror2 exclusively in OCs (CtskCreRor2fl/fl ) in Sfrp4 null mice significantly reversed the increased number of endosteal OCs seen in these mice and reduced their cortical thinning. Altogether, these data show autocrine and paracrine effects of Sfrp4 in regulating OCgenesis and demonstrate that the increase in endosteal OCs seen in Sfrp4-/- mice is a consequence of noncanonical Wnt/Ror2/Jnk signaling activation in OCs overriding the negative effect that activation of canonical Wnt/ß-catenin signaling has on OCgenesis.


Assuntos
Reabsorção Óssea/genética , MAP Quinase Quinase 4/genética , Osteoclastos/metabolismo , Proteínas Proto-Oncogênicas/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Animais , Comunicação Autócrina/genética , Reabsorção Óssea/patologia , Osso e Ossos/metabolismo , Diferenciação Celular/genética , Osso Cortical/crescimento & desenvolvimento , Osso Cortical/patologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos , Camundongos Knockout , Osteoblastos/metabolismo , Osteoblastos/patologia , Osteocondrodisplasias/genética , Osteoclastos/patologia , Comunicação Parácrina/genética , Deleção de Sequência , Via de Sinalização Wnt/genética
14.
Calcif Tissue Int ; 105(3): 316-330, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31243483

RESUMO

The mechano-adaptive response of bone to loading in the murine uniaxial tibial loading model is impaired in aged animals. Previous studies have shown that in aged mice, the amount of bone formed in response to loading is augmented when loads are applied following sciatic neurectomy. The synergistic effect of neurectomy and loading remains to be elucidated. We hypothesize that sciatic neurectomy increases cellular presence, thereby augmenting the response to load in aged mice. We examined bone adaptation in four groups of female C57BL/6J mice, 20-22 months old: (1) sham surgery + 9N loading; (2) sciatic neurectomy, sacrificed after 5 days; (3) sciatic neurectomy, sacrificed after 19 days; (4) sciatic neurectomy + 9N loading. We examined changes in bone cross sectional properties with micro-CT images, and static and dynamic histomorphometry with histological sections taken at the midpoint between tibiofibular junctions. The response to loading at 9N was not detectable with quantitative micro-CT data, but surface-specific histomorphometry captured an increase in bone formation in specific regions. 5 days following sciatic neurectomy, the amount of bone in the neurectomized leg was the same as the contralateral leg, but 19 days following sciatic neurectomy, there was significant bone loss in the neurectomized leg, and both osteoclasts and osteoblasts were recruited to the endosteal surfaces. When sciatic neurectomy and loading at 9N were combined, 3 out of 4 bone quadrants had increased bone formation, on the endosteal and periosteal surfaces (increased osteoid surface and mineralizing surface respectively). These data demonstrate that sciatic neurectomy increases cellular presence on the endosteal surface. With long-term sciatic-neurectomy, both osteoclasts and osteoblasts were recruited to the endosteal surface, which resulted in increased bone formation when combined with a sufficient mechanical stimulus. Controlled and localized recruitment of both osteoblasts and osteoclasts combined with appropriate mechanical loading could inform therapies for mechanically-directed bone formation.


Assuntos
Adaptação Fisiológica/fisiologia , Envelhecimento/fisiologia , Proliferação de Células/fisiologia , Fenômenos Mecânicos , Osteogênese/fisiologia , Nervo Isquiático/lesões , Nervo Isquiático/patologia , Animais , Denervação , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Tíbia , Suporte de Carga/fisiologia , Microtomografia por Raio-X
15.
Bone ; 124: 148-157, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31051317

RESUMO

Androgen deficiency is a leading cause of male osteoporosis, with bone loss driven by an inadequate level of bone formation relative to the extent of bone resorption. Abaloparatide, an osteoanabolic PTH receptor agonist used to treat women with postmenopausal osteoporosis at high risk for fracture, increases bone formation and bone strength in estrogen-deficient animals without increasing bone resorption. This study examined the effects of abaloparatide on bone formation, bone mass, and bone strength in androgen-deficient orchiectomized (ORX) rats, a male osteoporosis model. Four-month-old Sprague-Dawley rats underwent ORX or sham surgery. Eight weeks later, sham-operated rats received vehicle (saline; n = 10) while ORX rats (n = 10/group) received vehicle (Veh) or abaloparatide at 5 or 25 µg/kg (ABL5 or ABL25) by daily s.c. injection for 8 weeks, followed by sacrifice. Dynamic bone histomorphometry indicated that the tibial diaphysis of one or both abaloparatide groups had higher periosteal mineralizing surface, intracortical bone formation rate (BFR), endocortical BFR, and cortical thickness vs Veh controls. Vertebral trabecular BFR was also higher in both abaloparatide groups vs Veh, and the ABL25 group had higher trabecular osteoblast surface without increased osteoclast surface. By micro-CT, the vertebra and distal femur of both abaloparatide-groups had improved trabecular bone volume and micro-architecture, and the femur diaphysis of the ABL25 group had greater cortical thickness with no increase in porosity vs Veh. Biomechanical testing indicated that both abaloparatide-groups had stronger vertebrae and femoral necks vs Veh controls. These findings provide preclinical support for evaluating abaloparatide as an investigational treatment for male osteoporosis.


Assuntos
Osso Esponjoso/patologia , Osso Cortical/patologia , Colo do Fêmur/patologia , Colo do Fêmur/fisiopatologia , Osteoporose/patologia , Osteoporose/fisiopatologia , Proteína Relacionada ao Hormônio Paratireóideo/uso terapêutico , Coluna Vertebral/fisiopatologia , Animais , Fenômenos Biomecânicos/efeitos dos fármacos , Osso Esponjoso/diagnóstico por imagem , Osso Esponjoso/efeitos dos fármacos , Modelos Animais de Doenças , Colo do Fêmur/diagnóstico por imagem , Masculino , Tamanho do Órgão/efeitos dos fármacos , Osteoporose/diagnóstico por imagem , Proteína Relacionada ao Hormônio Paratireóideo/farmacologia , Ratos Sprague-Dawley , Coluna Vertebral/diagnóstico por imagem , Coluna Vertebral/efeitos dos fármacos , Coluna Vertebral/patologia , Microtomografia por Raio-X
16.
J Bone Miner Res ; 34(9): 1707-1720, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30998833

RESUMO

Energy metabolism and bone homeostasis share several regulatory pathways. The AP1 transcription factor ΔFosB and leptin both regulate energy metabolism and bone, yet whether their pathways intersect is not known. Transgenic mice overexpressing ΔFosB under the control of the Enolase 2 (ENO2) promoter exhibit high bone mass, high energy expenditure, low fat mass, and low circulating leptin levels. Because leptin is a regulator of bone and ΔFosB acts on leptin-responsive ventral hypothalamic (VHT) neurons to induce bone anabolism, we hypothesized that regulation of leptin may contribute to the central actions of ΔFosB in the VHT. To address this question, we used adeno-associated virus (AAV) expression of ΔFosB in the VHT of leptin-deficient ob/ob mice and genetic crossing of ENO2-ΔFosB with ob/ob mice. In both models, leptin deficiency prevented ΔFosB-triggered reduction in body weight, increase in energy expenditure, increase in glucose utilization, and reduction in pancreatic islet size. In contrast, leptin deficiency failed to prevent ΔFosB-triggered increase in bone mass. Unlike leptin deficiency, galanin deficiency blocked both the metabolic and the bone ΔFosB-induced effects. Overall, our data demonstrate that, while the catabolic energy metabolism effects of ΔFosB require intact leptin and galanin signaling, the bone mass-accruing effects of ΔFosB require galanin but are independent of leptin. © 2019 American Society for Bone and Mineral Research.


Assuntos
Osso e Ossos/anatomia & histologia , Metabolismo Energético , Galanina/metabolismo , Hipotálamo/metabolismo , Leptina/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Animais , Peso Corporal , Deleção de Genes , Glucose/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Tamanho do Órgão , Fosfopiruvato Hidratase/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo
17.
Mol Cell Biol ; 39(8)2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30692273

RESUMO

Satellite cells (SCs) are skeletal muscle stem cells that proliferate in response to injury and provide myogenic precursors for growth and repair. Zfp423 is a transcriptional cofactor expressed in multiple immature cell populations, such as neuronal precursors, mesenchymal stem cells, and preadipocytes, where it regulates lineage allocation, proliferation, and differentiation. Here, we show that Zfp423 regulates myogenic progression during muscle regeneration. Zfp423 is undetectable in quiescent SCs but becomes expressed during SC activation. After expansion, Zfp423 is gradually downregulated as committed SCs terminally differentiate. Mice with satellite-cell-specific Zfp423 deletion exhibit severely impaired muscle regeneration following injury, with aberrant SC expansion, defective cell cycle exit, and failure to transition efficiently from the proliferative stage toward commitment. Consistent with a cell-autonomous role of Zfp423, shRNA-mediated knockdown of Zfp423 in myoblasts inhibits differentiation. Surprisingly, forced expression of Zfp423 in myoblasts induces differentiation into adipocytes and arrests myogenesis. Affinity purification of Zfp423 in myoblasts identified Satb2 as a nuclear partner of Zfp423 that cooperatively enhances Zfp423 transcriptional activity, which in turn affects myoblast differentiation. In conclusion, by controlling SC expansion and proliferation, Zfp423 is essential for muscle regeneration. Tight regulation of Zfp423 expression is essential for normal progression of muscle progenitors from proliferation to differentiation.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/citologia , Fatores de Transcrição/metabolismo , Adipócitos/citologia , Animais , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Proteínas de Ligação a DNA/genética , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Desenvolvimento Muscular/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/fisiologia , Regeneração/fisiologia , Células Satélites de Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/fisiologia , Transdução de Sinais , Células-Tronco/citologia , Fatores de Transcrição/genética , Cicatrização
18.
J Bone Miner Res ; 34(6): 1129-1142, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30690791

RESUMO

Human genetic evidence demonstrates that WNT1 mutations cause osteogenesis imperfecta (OI) and early-onset osteoporosis, implicating WNT1 as a major regulator of bone metabolism. However, its main cellular source and mechanisms of action in bone remain elusive. We generated global and limb bud mesenchymal cell-targeted deletion of Wnt1 in mice. Heterozygous deletion of Wnt1 resulted in mild trabecular osteopenia due to decreased osteoblast function. Targeted deletion of Wnt1 in mesenchymal progenitors led to spontaneous fractures due to impaired osteoblast function and increased bone resorption, mimicking the severe OI phenotype in humans with homozygous WNT1 mutations. Importantly, we showed for the first time that Wnt1 signals strictly in a juxtacrine manner to induce osteoblast differentiation and to suppress osteoclastogenesis, in part via canonical Wnt signaling. In conclusion, mesenchymal cell-derived Wnt1, acting in short range, is an essential regulator of bone homeostasis and an intriguing target for therapeutic interventions for bone diseases. © 2019 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals, Inc.


Assuntos
Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/citologia , Osteoclastos/citologia , Via de Sinalização Wnt , Proteína Wnt1/metabolismo , Animais , Doenças Ósseas Metabólicas/patologia , Linhagem Celular , Núcleo Celular/metabolismo , Fraturas Ósseas/patologia , Deleção de Genes , Heterozigoto , Camundongos Knockout , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteogênese
19.
Bone ; 120: 148-155, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30343166

RESUMO

Male osteoporosis can occur with advanced age and with hypogonadism, with increased bone resorption and/or inadequate bone formation contributing to reduced bone mass and increased fracture risk. Abaloparatide is a selective PTH receptor agonist that increases bone formation and bone mass in postmenopausal women with osteoporosis and in estrogen-deficient animals. The current study evaluated the effects of abaloparatide in orchiectomized (ORX) rats, a model of male osteoporosis. Four-month-old Sprague-Dawley rats underwent ORX or sham surgery; 8 weeks later the ORX groups exhibited relative osteopenia vs sham controls, based on dual X-ray absorptiometry (DXA) and/or peripheral quantitative computed tomography (pQCT) assessments at the total body, lumbar spine, femur, and tibia. ORX rats (n = 10/group) were then injected daily (s.c.) for 8 weeks with vehicle or abaloparatide at 5 (ABL5) or 25 µg/kg/d (ABL25). Sham controls (n = 10) received s.c. vehicle. DXA and pQCT showed that one or both abaloparatide groups gained more areal and volumetric BMD at all sites analyzed compared with vehicle controls, leading to substantial or complete reversal of ORX-induced BMD deficits. pQCT also indicated greater gains in tibial cortical thickness in both abaloparatide groups versus vehicle controls. Tibial bone histomorphometry showed greater trabecular bone formation and bone volume and improved micro-architecture with abaloparatide, with no increase in osteoclasts. Abaloparatide also led to significant improvements in the balance of biochemical bone formation markers versus bone resorption markers, which correlated with BMD changes. These findings suggest that abaloparatide may have therapeutic benefits in men with osteoporosis.


Assuntos
Reabsorção Óssea/patologia , Osso Esponjoso/patologia , Osso Cortical/patologia , Orquiectomia , Osteogênese , Proteína Relacionada ao Hormônio Paratireóideo/farmacologia , Absorciometria de Fóton , Animais , Biomarcadores/metabolismo , Densidade Óssea/efeitos dos fármacos , Remodelação Óssea/efeitos dos fármacos , Osso Esponjoso/efeitos dos fármacos , Osso Cortical/efeitos dos fármacos , Masculino , Tamanho do Órgão , Osteogênese/efeitos dos fármacos , Ratos Sprague-Dawley , Tíbia/diagnóstico por imagem , Tíbia/efeitos dos fármacos , Microtomografia por Raio-X
20.
Bone ; 120: 487-494, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30586636

RESUMO

The uniaxial tibial loading model is commonly used to promote bone formation through mechanoadaptation in mice. Sciatic neurectomy on the other hand recruits osteoclasts, which results in bone loss. Previous studies have shown that combining sciatic neurectomy with high magnitude loading increases the amount of bone formed. Here we determine whether low-intensity loading (low magnitude and few cycles) is sufficient to maintain bone mass after sciatic neurectomy, either by promoting bone formation (balance between concurrent resorption and formation), or by preventing bone resorption altogether. We examined bone adaptation in 4 groups of female C57BL/6J mice, 19-22 weeks old: (1) sham surgery +10 N loading; (2) sham surgery +5 N loading; (3) sciatic neurectomy; (4) sciatic neurectomy +5 N loading. Left legs were kept intact as internal controls. We examined changes in bone cross sectional properties and marrow area with micro-CT images, and histomorphometric measures with histological sections at the midpoint between tibiofibular junctions. Loading at 10 N caused a significant increase in the amount of bone, but bone formation after 5 N of loading was not detectable in micro-CT images. There was significant bone loss in mice with sciatic neurectomy alone, but when combined with loading there was no significant bone loss. Histomorphometric analyses showed that loading at 5 N augmented bone formation periosteally on the lateral and posterior-medial surfaces, and reduced the number of endosteal osteoclasts on the posterior-medial surface compared to the contralateral leg. Combining sciatic neurectomy and loading at 5 N promoted faster mineral apposition on the periosteal lateral surface and augmented bone resorption on the endosteal posterior surface compared to the contralateral leg. These data demonstrate that low-intensity loading is sufficient to maintain bone mass after sciatic neurectomy, both by preventing recruitment of osteoclasts on the endosteal surface and by compensating endosteal resorption caused by disuse with periosteal formation promoted by loading. This has implications for the loading required to maintain bone mass after injury or prolonged bedrest.


Assuntos
Adaptação Fisiológica , Reabsorção Óssea/fisiopatologia , Osso e Ossos/fisiopatologia , Denervação , Nervo Isquiático/fisiopatologia , Nervo Isquiático/cirurgia , Animais , Reabsorção Óssea/patologia , Osso e Ossos/patologia , Osso Cortical/fisiopatologia , Feminino , Corantes Fluorescentes/metabolismo , Camundongos Endogâmicos C57BL , Tíbia/patologia , Tíbia/fisiopatologia , Suporte de Carga
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA