Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Neurosurgery ; 90(6): 653-667, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35319532

RESUMO

BACKGROUND: Although numerous articles have been published not only on the classification of thoracic outlet syndrome (TOS) but also on diagnostic standards, timing, and type of surgical intervention, there still remains some controversy because of the lack of level 1 evidence. So far, attempts to generate uniform reporting standards have not yielded conclusive results. OBJECTIVE: To systematically review the body of evidence and reach a consensus among neurosurgeons experienced in TOS regarding anatomy, diagnosis, and classification. METHODS: A systematic literature search on PubMed/MEDLINE was performed on February 13, 2021, yielding 2853 results. Abstracts were screened and classified. Recommendations were developed in a meeting held online on February 10, 2021, and refined according to the Delphi consensus method. RESULTS: Six randomized controlled trials (on surgical, conservative, and injection therapies), 4 "guideline" articles (on imaging and reporting standards), 5 observational studies (on diagnostics, hierarchic designs of physiotherapy vs surgery, and quality of life outcomes), and 6 meta-analyses were identified. The European Association of Neurosurgical Societies' section of peripheral nerve surgery established 18 statements regarding anatomy, diagnosis, and classification of TOS with agreement levels of 98.4 % (±3.0). CONCLUSION: Because of the lack of level 1 evidence, consensus statements on anatomy, diagnosis, and classification of TOS from experts of the section of peripheral nerve surgery of the European Association of Neurosurgical Societies were developed with the Delphi method. Further work on reporting standards, prospective data collections, therapy, and long-term outcome is necessary.


Assuntos
Qualidade de Vida , Síndrome do Desfiladeiro Torácico , Humanos , Procedimentos Neurocirúrgicos/efeitos adversos , Nervos Periféricos , Modalidades de Fisioterapia , Síndrome do Desfiladeiro Torácico/diagnóstico , Síndrome do Desfiladeiro Torácico/etiologia , Síndrome do Desfiladeiro Torácico/cirurgia
2.
Cochrane Database Syst Rev ; 1: CD013630, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33428222

RESUMO

BACKGROUND: Multiple studies have identified the prognostic relevance of extent of resection in the management of glioma. Different intraoperative technologies have emerged in recent years with unknown comparative efficacy in optimising extent of resection. One previous Cochrane Review provided low- to very low-certainty evidence in single trial analyses and synthesis of results was not possible. The role of intraoperative technology in maximising extent of resection remains uncertain. Due to the multiple complementary technologies available, this research question is amenable to a network meta-analysis methodological approach. OBJECTIVES: To establish the comparative effectiveness and risk profile of specific intraoperative imaging technologies using a network meta-analysis and to identify cost analyses and economic evaluations as part of a brief economic commentary. SEARCH METHODS: We searched CENTRAL (2020, Issue 5), MEDLINE via Ovid to May week 2 2020, and Embase via Ovid to 2020 week 20. We performed backward searching of all identified studies. We handsearched two journals, Neuro-oncology and the Journal of Neuro-oncology from 1990 to 2019 including all conference abstracts. Finally, we contacted recognised experts in neuro-oncology to identify any additional eligible studies and acquire information on ongoing randomised controlled trials (RCTs). SELECTION CRITERIA: RCTs evaluating people of all ages with presumed new or recurrent glial tumours (of any location or histology) from clinical examination and imaging (computed tomography (CT) or magnetic resonance imaging (MRI), or both). Additional imaging modalities (e.g. positron emission tomography, magnetic resonance spectroscopy) were not mandatory. Interventions included fluorescence-guided surgery, intraoperative ultrasound, neuronavigation (with or without additional image processing, e.g. tractography), and intraoperative MRI. DATA COLLECTION AND ANALYSIS: Two review authors independently assessed the search results for relevance, undertook critical appraisal according to known guidelines, and extracted data using a prespecified pro forma. MAIN RESULTS: We identified four RCTs, using different intraoperative imaging technologies: intraoperative magnetic resonance imaging (iMRI) (2 trials, with 58 and 14 participants); fluorescence-guided surgery with 5-aminolevulinic acid (5-ALA) (1 trial, 322 participants); and neuronavigation (1 trial, 45 participants). We identified one ongoing trial assessing iMRI with a planned sample size of 304 participants for which results are expected to be published around winter 2020. We identified no published trials for intraoperative ultrasound. Network meta-analyses or traditional meta-analyses were not appropriate due to absence of homogeneous trials across imaging technologies. Of the included trials, there was notable heterogeneity in tumour location and imaging technologies utilised in control arms. There were significant concerns regarding risk of bias in all the included studies. One trial of iMRI found increased extent of resection (risk ratio (RR) for incomplete resection was 0.13, 95% confidence interval (CI) 0.02 to 0.96; 49 participants; very low-certainty evidence) and one trial of 5-ALA (RR for incomplete resection was 0.55, 95% CI 0.42 to 0.71; 270 participants; low-certainty evidence). The other trial assessing iMRI was stopped early after an unplanned interim analysis including 14 participants; therefore, the trial provided very low-quality evidence. The trial of neuronavigation provided insufficient data to evaluate the effects on extent of resection. Reporting of adverse events was incomplete and suggestive of significant reporting bias (very low-certainty evidence). Overall, the proportion of reported events was low in most trials and, therefore, issues with power to detect differences in outcomes that may or may not have been present. Survival outcomes were not adequately reported, although one trial reported no evidence of improvement in overall survival with 5-ALA (hazard ratio (HR) 0.82, 95% CI 0.62 to 1.07; 270 participants; low-certainty evidence). Data for quality of life were only available for one study and there was significant attrition bias (very low-certainty evidence). AUTHORS' CONCLUSIONS: Intraoperative imaging technologies, specifically 5-ALA and iMRI, may be of benefit in maximising extent of resection in participants with high-grade glioma. However, this is based on low- to very low-certainty evidence. Therefore, the short- and long-term neurological effects are uncertain. Effects of image-guided surgery on overall survival, progression-free survival, and quality of life are unclear. Network and traditional meta-analyses were not possible due to the identified high risk of bias, heterogeneity, and small trials included in this review. A brief economic commentary found limited economic evidence for the equivocal use of iMRI compared with conventional surgery. In terms of costs, one non-systematic review of economic studies suggested that, compared with standard surgery, use of image-guided surgery has an uncertain effect on costs and that 5-ALA was more costly. Further research, including completion of ongoing trials of ultrasound-guided surgery, is needed.


ANTECEDENTES: En múltiples estudios se ha identificado la importancia pronóstica del alcance de la resección en el tratamiento del glioma. En los últimos años han surgido diferentes tecnologías intraoperatorias con una eficacia comparativa desconocida para optimizar el alcance de la resección. Una revisión Cochrane anterior proporcionó evidencia de certeza baja a muy baja en los análisis de un solo ensayo y no fue posible la síntesis de los resultados. La función de la tecnología intraoperatoria para maximizar el alcance de la resección aún no está clara. Debido a las múltiples tecnologías complementarias disponibles, esta pregunta de investigación se presta a un enfoque metodológico de metanálisis en red. OBJETIVOS: Establecer el perfil comparativo de efectividad y riesgo de determinadas tecnologías de imagenología intraoperatorias mediante un metanálisis en red e identificar análisis de costos y evaluaciones económicas como parte de un breve comentario económico. MÉTODOS DE BÚSQUEDA: Se hicieron búsquedas en CENTRAL (2020, número 5), MEDLINE vía Ovid hasta la semana 2 de mayo de 2020, y Embase vía Ovid hasta la semana 20 de 2020. Se realizó una búsqueda retrospectiva de todos los estudios identificados. Se hicieron búsquedas manuales en dos revistas, Neuro­oncology y Journal of Neuro­oncology, desde 1990 hasta 2019, y se incluyeron todos los resúmenes de congresos. Finalmente, se estableció contacto con expertos reconocidos en neurooncología para identificar cualquier estudio elegible adicional y obtener información sobre los ensayos controlados aleatorizados (ECA) en curso. CRITERIOS DE SELECCIÓN: ECA que evaluaron a personas de todas las edades con presuntos tumores gliales nuevos o recidivantes (de cualquier ubicación o histología) a partir del examen clínico y la imagenología (tomografía computarizada [TC] o imagenología de resonancia magnética [IRM], o ambas). Las modalidades adicionales de imagenología (p.ej., tomografía de emisión de positrones, espectroscopia de resonancia magnética) no fueron obligatorias. Las intervenciones incluyeron cirugía guiada por fluorescencia, ecografía intraoperatoria, neuronavegación (con o sin procesamiento adicional de las imágenes, p.ej., tractografía) e IRM intraoperatoria. OBTENCIÓN Y ANÁLISIS DE LOS DATOS: Dos autores de la revisión, de forma independiente, evaluaron los resultados de la búsqueda en cuanto a su relevancia, realizaron la evaluación crítica según las guías conocidas y extrajeron los datos mediante un formulario predeterminado. RESULTADOS PRINCIPALES: Se identificaron cuatro ECA, que utilizaron diferentes tecnologías de imagenología intraoperatorias: la resonancia magnética (IRM) intraoperatoria (dos ensayos, con 58 y 14 participantes); la cirugía guiada por fluorescencia con ácido 5­aminolevulínico (5­ALA) (un ensayo, 322 participantes); y la neuronavegación (un ensayo, 45 participantes). Se identificó un ensayo en curso que evaluó la IRM con un tamaño de la muestra planificado de 304 participantes, del que se espera la publicación de los resultados alrededor del invierno de 2020. No se han identificado ensayos publicados sobre la ecografía intraoperatoria. Los metanálisis en red o los metanálisis tradicionales no fueron apropiados debido a la falta de ensayos homogéneos en tecnologías de imagenología. De los ensayos incluidos, hubo una notable heterogeneidad en la localización de los tumores y en las tecnologías de imagenología utilizadas en los brazos control. Hubo inquietudes significativas con respecto al riesgo de sesgo en todos los estudios incluidos. Un ensayo de IRM encontró un aumento en la extensión de la resección (razón de riesgos [RR] para la resección incompleta 0,13; intervalo de confianza [IC] del 95%: 0,02 a 0,96; 49 participantes; evidencia de certeza muy baja) y un ensayo de 5­ALA (RR para la resección incompleta 0,55; IC del 95%: 0,42 a 0,71; 270 participantes; evidencia de certeza baja). El otro ensayo que evaluó la IRM se interrumpió de forma temprana después de un análisis intermedio no planificado que incluyó 14 participantes; por lo tanto, el ensayo proporciona evidencia de calidad muy baja. El ensayo de neuronavegación no proporcionó datos suficientes para evaluar los efectos sobre el grado de resección. El informe de los eventos adversos fue incompleto e indicó la presencia de sesgo de informe significativo (evidencia de certeza muy baja). En general, la proporción de eventos informados fue baja en la mayoría de los ensayos y, por lo tanto, pueden haber estado presentes o no problemas relacionados con el poder estadístico suficiente para detectar diferencias en los desenlaces. No se informó adecuadamente sobre los desenlaces de supervivencia, aunque un ensayo no informó evidencia de mejora en la supervivencia general con 5­ALA (cociente de riesgos instantáneos [CRI] 0,82; IC del 95%: 0,62 a 1,07; 270 participantes; evidencia de certeza baja). Solo hubo datos disponibles sobre la calidad de vida de un estudio, con un sesgo de desgaste significativo (evidencia de certeza muy baja). CONCLUSIONES DE LOS AUTORES: Las tecnologías de imagenología intraoperatoria, específicamente la IRM y el 5­ALA, pueden ser beneficiosas para maximizar el grado de resección en los participantes con glioma de grado alto. Sin embargo, lo anterior se basa en evidencia de certeza baja a muy baja. Por lo tanto, los efectos neurológicos a corto y a largo plazo no están claros. No están claros los efectos de la cirugía guiada por imágenes sobre la supervivencia general, la supervivencia sin progresión ni la calidad de vida. No fue posible realizar metanálisis en red ni tradicionales debido al alto riesgo de sesgo identificado, a la heterogeneidad y a los ensayos pequeños incluidos en esta revisión. Un comentario económico breve encontró evidencia económica limitada sobre el uso equívoco de la IRM en comparación con la cirugía convencional. En cuanto a los costos, una revisión no sistemática de estudios económicos indicó que, en comparación con la cirugía estándar, el uso de la cirugía guiada por imágenes no tiene un efecto claro sobre los costos y que el ácido 5­aminolevulínico fue más costoso. Se necesitan estudios de investigación adicionales, incluida la finalización de los ensayos en curso sobre la cirugía guiada por ecografía.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Glioma/diagnóstico por imagem , Glioma/cirurgia , Ácido Aminolevulínico/administração & dosagem , Viés , Humanos , Cuidados Intraoperatórios , Imagem por Ressonância Magnética Intervencionista/estatística & dados numéricos , Metanálise em Rede , Neuronavegação/métodos , Neuronavegação/estatística & dados numéricos , Imagem Óptica/métodos , Imagem Óptica/estatística & dados numéricos , Ensaios Clínicos Controlados Aleatórios como Assunto/estatística & dados numéricos
3.
Cochrane Database Syst Rev ; 1: CD012788, 2018 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-29355914

RESUMO

BACKGROUND: Extent of resection is considered to be a prognostic factor in neuro-oncology. Intraoperative imaging technologies are designed to help achieve this goal. It is not clear whether any of these sometimes very expensive tools (or their combination) should be recommended as standard care for people with brain tumours. We set out to determine if intraoperative imaging technology offers any advantage in terms of extent of resection over standard surgery and if any one technology was more effective than another. OBJECTIVES: To establish the overall effectiveness and safety of intraoperative imaging technology in resection of glioma. To supplement this review of effects, we also wished to identify cost analyses and economic evaluations as part of a Brief Economic Commentary (BEC). SEARCH METHODS: We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (Issue 7, 2017), MEDLINE (1946 to June, week 4, 2017), and Embase (1980 to 2017, week 27). We searched the reference lists of all identified studies. We handsearched two journals, the Journal of Neuro-Oncology and Neuro-oncology, from 1991 to 2017, including all conference abstracts. We contacted neuro-oncologists, trial authors, and manufacturers regarding ongoing and unpublished trials. SELECTION CRITERIA: Randomised controlled trials evaluating people of all ages with presumed new or recurrent glial tumours (of any location or histology) from clinical examination and imaging (computed tomography (CT) or magnetic resonance imaging (MRI), or both). Additional imaging modalities (e.g. positron emission tomography, magnetic resonance spectroscopy) were not mandatory. Interventions included intraoperative MRI (iMRI), fluorescence-guided surgery, ultrasound, and neuronavigation (with or without additional image processing, e.g. tractography). DATA COLLECTION AND ANALYSIS: Two review authors independently assessed the search results for relevance, undertook critical appraisal according to known guidelines, and extracted data using a prespecified pro forma. MAIN RESULTS: We identified four randomised controlled trials, using different intraoperative imaging technologies: iMRI (2 trials including 58 and 14 participants, respectively); fluorescence-guided surgery with 5-aminolevulinic acid (5-ALA) (1 trial, 322 participants); and neuronavigation (1 trial, 45 participants). We identified one ongoing trial assessing iMRI with a planned sample size of 304 participants for which results are expected to be published around autumn 2018. We identified no trials for ultrasound.Meta-analysis was not appropriate due to differences in the tumours included (eloquent versus non-eloquent locations) and variations in the image guidance tools used in the control arms (usually selective utilisation of neuronavigation). There were significant concerns regarding risk of bias in all the included studies. All studies included people with high-grade glioma only.Extent of resection was increased in one trial of iMRI (risk ratio (RR) of incomplete resection 0.13, 95% confidence interval (CI) 0.02 to 0.96; 1 study, 49 participants; very low-quality evidence) and in the trial of 5-ALA (RR of incomplete resection 0.55, 95% CI 0.42 to 0.71; 1 study, 270 participants; low-quality evidence). The other trial assessing iMRI was stopped early after an unplanned interim analysis including 14 participants, therefore the trial provides very low-quality evidence. The trial of neuronavigation provided insufficient data to evaluate the effects on extent of resection.Reporting of adverse events was incomplete and suggestive of significant reporting bias (very low-quality evidence). Overall, reported events were low in most trials. There was no clear evidence of improvement in overall survival with 5-ALA (hazard ratio 0.83, 95% CI 0.62 to 1.07; 1 study, 270 participants; low-quality evidence). Progression-free survival data were not available in an appropriate format for analysis. Data for quality of life were only available for one study and suffered from significant attrition bias (very low-quality evidence). AUTHORS' CONCLUSIONS: Intra-operative imaging technologies, specifically iMRI and 5-ALA, may be of benefit in maximising extent of resection in participants with high grade glioma. However, this is based on low to very low quality evidence, and is therefore very uncertain. The short- and long-term neurological effects are uncertain. Effects of image-guided surgery on overall survival, progression-free survival, and quality of life are unclear. A brief economic commentary found limited economic evidence for the equivocal use of iMRI compared with conventional surgery. In terms of costs, a non-systematic review of economic studies suggested that compared with standard surgery use of image-guided surgery has an uncertain effect on costs and that 5-aminolevulinic acid was more costly. Further research, including studies of ultrasound-guided surgery, is needed.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Encéfalo/diagnóstico por imagem , Glioma/diagnóstico por imagem , Glioma/cirurgia , Imageamento por Ressonância Magnética , Neuronavegação , Tomografia Computadorizada por Raios X , Ácido Aminolevulínico/uso terapêutico , Humanos , Cuidados Intraoperatórios , Fármacos Fotossensibilizantes/uso terapêutico
4.
World Neurosurg ; 109: e81-e87, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28951269

RESUMO

OBJECTIVE: Arachnoid webs are rare intradural lesions that can cause direct spinal cord compression or alteration of the cerebrospinal fluid flow with syringomyelia. Surgery has been historically performed through wide-open laminectomies. The aim of this study is to prove the feasibility of minimally invasive techniques for the excision of arachnoid webs. METHODS: A retrospective review of two cases of minimally invasive excision of thoracic arachnoid webs was performed. Surgery was undertaken through expandable tubular retractors. RESULTS: Complete excision was achieved through the described approach, with minimal bony removal and soft tissue disruption. There were no intraoperative or perioperative complications. Both patients were mobilized early and discharged home within 24 hours after surgery. Postoperative imaging showed good re-expansion of the spinal cord, with no evidence of residual compression or tethering. CONCLUSIONS: For symptomatic arachnoid webs, surgery remains the only definitive treatment. In expert hands, the excision of arachnoid webs can be achieved with tubular retractors and minimally invasive techniques.


Assuntos
Aracnoide-Máter/cirurgia , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Compressão da Medula Espinal/cirurgia , Vértebras Torácicas/cirurgia , Aracnoide-Máter/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Compressão da Medula Espinal/diagnóstico por imagem , Vértebras Torácicas/diagnóstico por imagem
5.
Med Teach ; 39(11): 1168-1173, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28793829

RESUMO

AIM: There has been an increased interest in the use of three-dimensional (3D) technology in surgical training. We wish to appraise the methodological rigor applied to evaluating the role and applications of 3D technology in surgical training, in particular, on the validity of these models and assessment methods in simulated surgical training. METHODS: Literature search was performed using MEDLINE with the following terms: "3D"; "surgery"; and "training". Only studies evaluating the role of 3D technology in surgical training were eligible for inclusion and assessed for the level of evidence, validity of the simulation model, and assessment method used. RESULTS: A total of 93 studies were analyzed, and majority of reviewed articles focused on 3D displays (36) and 3D printing (35). Most of these studies were case series, the most common assessment was subjective (69), with objective assessment used by 57 studies. Very few studies provided evidence for validity of the model or the assessment methods used. CONCLUSIONS: 3D technology has a great potential in simulated surgical training. However, the validity of this technology and strong evidence for its beneficial effects in surgical training is lacking. Further work on validation of 3D technology and assessment tools is needed.


Assuntos
Simulação por Computador/normas , Modelos Anatômicos , Treinamento por Simulação/métodos , Treinamento por Simulação/normas , Procedimentos Cirúrgicos Operatórios/educação , Competência Clínica , Humanos , Avaliação de Programas e Projetos de Saúde , Reprodutibilidade dos Testes
6.
Br J Neurosurg ; 28(6): 819-20, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24971491

RESUMO

The educational value of stereoscopic imaging in neurosurgical training has increasingly been appreciated and its use increased during the last decade. We describe a technique that we developed to acquire and reproduce intra-operative stereoscopic images.


Assuntos
Imageamento Tridimensional/métodos , Procedimentos Neurocirúrgicos/métodos , Cirurgia Assistida por Computador/métodos , Humanos , Imageamento Tridimensional/instrumentação , Procedimentos Neurocirúrgicos/instrumentação , Cirurgia Assistida por Computador/instrumentação
7.
Cochrane Database Syst Rev ; (1): CD009685, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24474579

RESUMO

BACKGROUND: Extent of resection is believed to be a key prognostic factor in neuro-oncology. Image guided surgery uses a variety of tools or technologies to help achieve this goal. It is not clear whether any of these, sometimes very expensive, tools (or their combination) should be recommended as part of standard care for patient with brain tumours. We set out to determine if image guided surgery offers any advantage in terms of extent of resection over surgery without any image guidance and if any one tool or technology was more effective. OBJECTIVES: To compare image guided surgery with surgery either not using any image guidance or to compare surgery using two different forms of image guidance. The primary outcome criteria was extent of resection and adverse events. Other outcome criteria were overall survival; progression free survival; and quality of life (QoL). SEARCH METHODS: The following databases were searched, the Cochrane Central Register of Controlled Trials (CENTRAL) (Issue 1, 2013), MEDLINE (1948 to March, week 10, 2013) and EMBASE (1970 to 2013, week 10). Reference lists of all identified studies were searched. Two journals, the Journal of Neuro-Oncology and Neuro-oncology, were handsearched from 1991 to 2013, including all conference abstracts. Neuro-oncologists, trial authors and manufacturers were contacted regarding ongoing and unpublished trials. SELECTION CRITERIA: Study participants included patients of all ages with a presumed new or recurrent brain tumour (any location or histology) from clinical examination and imaging (computed tomography (CT), magnetic resonance imaging (MRI) or both). Image guidance interventions included intra-operative MRI (iMRI); fluorescence guided surgery; neuronavigation including diffusion tensor imaging (DTI); and ultrasonography. Included studies had to be randomised controlled trials (RCTs) with comparisons made either with patients having surgery without the image guidance tool in question or with another type of image guidance tool. Subgroups were to include high grade glioma; low grade glioma; brain metastasis; skull base meningiomas; and sellar or parasellar tumours. DATA COLLECTION AND ANALYSIS: Two review authors independently assessed the search results for relevance, undertook critical appraisal according to known guidelines, and extracted data using a pre-specified pro forma. MAIN RESULTS: Four RCTs were identified, each using a different image guided technique: 1. iMRI (58 patients), 2. 5-aminolevulinic acid (5-ALA) fluorescence guided surgery (322 patients), 3. neuronavigation (45 patients) and 4. DTI-neuronavigation (238 patients). Meta-analysis was not appropriate due to differences in the tumours included (eloquent versus non-eloquent locations) and variations in the image guidance tools used in the control arms (usually selective utilisation of neuronavigation). There were significant concerns regarding risk of bias in all the included studies, especially for the study using DTI-neuronavigation. All studies included patients with high grade glioma, with one study also including patients with low grade glioma. The extent of resection was increased with iMRI (risk ratio (RR) (incomplete resection) 0.13, 95% CI 0.02 to 0.96, low quality evidence), 5-ALA (RR 0.55, 95% CI 0.42 to 0.71) and DTI-neuronavigation (RR 0.35, 95% CI 0.20 to 0.63, very low quality evidence). Insufficient data were available to evaluate the effects of neuronavigation on extent of resection. Reporting of adverse events was incomplete, with a suggestion of significant reporting bias. Overall, reported events were low in most studies, but there was concern that surgical resection using 5-ALA may lead to more frequent early neurological deficits. There was no clear evidence of improvement in overall survival (OS) with 5-ALA (hazard ratio (HR) 0.82, 95% CI 0.62 to 1.07) or DTI-neuronavigation (HR 0.57, 95% CI 0.32 to 1.00) in patients with high grade glioma. Progression-free survival (PFS) data were not available in the appropriate format for analysis.Data for quality of life (QoL) were only available for one study and suffered from significant attrition bias. AUTHORS' CONCLUSIONS: There is low to very low quality evidence (according to GRADE criteria) that image guided surgery using iMRI, 5-ALA or DTI-neuronavigation increases the proportion of patients with high grade glioma that have a complete tumour resection on post-operative MRI. There is a theoretical concern that maximising the extent of resection may lead to more frequent adverse events but this was poorly reported in the included studies. Effects of image guided surgery on survival and QoL are unclear. Further research, including studies of ultrasound guided surgery, is needed.


Assuntos
Neoplasias Encefálicas/cirurgia , Glioma/cirurgia , Cirurgia Assistida por Computador/métodos , Ácido Aminolevulínico , Humanos , Imagem por Ressonância Magnética Intervencionista , Neuronavegação/métodos , Ensaios Clínicos Controlados Aleatórios como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA