Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Exp Mol Med ; 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39218980

RESUMO

Micronuclei (MN) can form through many mechanisms, including the breakage of aberrant cytokinetic chromatin bridges. The frequent observation of MN in tumors suggests that they might not merely be passive elements but could instead play active roles in tumor progression. Here, we propose a mechanism through which the presence of micronuclei could induce specific phenotypic and functional changes in cells and increase the invasive potential of cancer cells. Through the integration of diverse in vitro imaging and molecular techniques supported by clinical samples from patients with prostate cancer (PCa) defined as high-risk by the D'Amico classification, we demonstrate that the resolution of chromosome bridges can result in the accumulation of Emerin and the formation of Emerin-rich MN. These structures are negative for Lamin A/C and positive for the Lamin-B receptor and Sec61ß. MN can act as a protein sinks and result in the pauperization of Emerin from the nuclear envelope. The Emerin mislocalization phenotype is associated with a molecular signature that is correlated with a poor prognosis in PCa patients and is enriched in metastatic samples. Emerin mislocalization corresponds with increases in the migratory and invasive potential of tumor cells, especially in a collagen-rich microenvironment. Our study demonstrates that the mislocalization of Emerin to MN results in increased cell invasiveness, thereby worsening patient prognosis.

2.
Nat Commun ; 15(1): 7100, 2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-39155303

RESUMO

The identification of genes involved in replicative stress is key to understanding cancer evolution and to identify therapeutic targets. Here, we show that CDK12 prevents transcription-replication conflicts (TRCs) and the activation of cytotoxic replicative stress upon deregulation of the MYC oncogene. CDK12 was recruited at damaged genes by PARP-dependent DDR-signaling and elongation-competent RNAPII, to repress transcription. Either loss or chemical inhibition of CDK12 led to DDR-resistant transcription of damaged genes. Loss of CDK12 exacerbated TRCs in MYC-overexpressing cells and led to the accumulation of double-strand DNA breaks, occurring between co-directional early-replicating regions and transcribed genes. Overall, our data demonstrate that CDK12 protects genome integrity by repressing transcription of damaged genes, which is required for proper resolution of DSBs at oncogene-induced TRCs. This provides a rationale that explains both how CDK12 deficiency can promote tandem duplications of early-replicated regions during tumor evolution, and how CDK12 targeting can exacerbate replicative-stress in tumors.


Assuntos
Quinases Ciclina-Dependentes , Replicação do DNA , Transcrição Gênica , Humanos , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/genética , Quebras de DNA de Cadeia Dupla , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Linhagem Celular Tumoral , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , Dano ao DNA
3.
Cell Rep ; 42(12): 113555, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38088930

RESUMO

Ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3-related (ATR) DNA damage response (DDR) kinases contain elastic domains. ATM also responds to reactive oxygen species (ROS) and ATR to nuclear mechanical stress. Mre11 mediates ATM activation following DNA damage; ATM mutations cause ataxia telangiectasia (A-T). Here, using in vivo imaging, electron microscopy, proteomic, and mechano-biology approaches, we study how ATM responds to mechanical stress. We report that cytoskeleton and ROS, but not Mre11, mediate ATM activation following cell deformation. ATM deficiency causes hyper-stiffness, stress fiber accumulation, Yes-associated protein (YAP) nuclear enrichment, plasma and nuclear membrane alterations during interstitial migration, and H3 hyper-methylation. ATM locates to the actin cytoskeleton and, following cytoskeleton stress, promotes phosphorylation of key cytoskeleton and chromatin regulators. Our data contribute to explain some clinical features of patients with A-T and pinpoint the existence of an integrated mechano-response in which ATM and ATR have distinct roles unrelated to their canonical DDR functions.


Assuntos
Ataxia Telangiectasia , Proteínas Serina-Treonina Quinases , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Cromatina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteômica , Proteínas de Ligação a DNA/metabolismo , Fosforilação , Dano ao DNA , Citoesqueleto/metabolismo
4.
Sci Adv ; 9(37): eadh4184, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37713487

RESUMO

Cancers feature substantial intratumoral heterogeneity of genetic and phenotypically distinct lineages. Although interactions between coexisting lineages are emerging as a potential contributor to tumor evolution, the extent and nature of these interactions remain largely unknown. We postulated that tumors develop ecological interactions that sustain diversity and facilitate metastasis. Using a combination of fluorescent barcoding, mathematical modeling, metabolic analysis, and in vivo models, we show that the Allee effect, i.e., growth dependency on population size, is a feature of tumor lineages and that cooperative ecological interactions between lineages alleviate the Allee barriers to growth in a model of triple-negative breast cancer. Soluble metabolite exchange formed the basis for these cooperative interactions and catalyzed the establishment of a polyclonal community that displayed enhanced metastatic dissemination and outgrowth in xenograft models. Our results highlight interclonal metabolite exchange as a key modulator of tumor ecology and a contributing factor to overcoming Allee effect-associated growth barriers to metastasis.


Assuntos
Corantes , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Modelos Animais de Doenças , Densidade Demográfica
5.
EMBO J ; 41(22): e108040, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36215697

RESUMO

The ribonuclease DIS3 is one of the most frequently mutated genes in the hematological cancer multiple myeloma, yet the basis of its tumor suppressor function in this disease remains unclear. Herein, exploiting the TCGA dataset, we found that DIS3 plays a prominent role in the DNA damage response. DIS3 inactivation causes genomic instability by increasing mutational load, and a pervasive accumulation of DNA:RNA hybrids that induces genomic DNA double-strand breaks (DSBs). DNA:RNA hybrid accumulation also prevents binding of the homologous recombination (HR) machinery to double-strand breaks, hampering DSB repair. DIS3-inactivated cells become sensitive to PARP inhibitors, suggestive of a defect in homologous recombination repair. Accordingly, multiple myeloma patient cells mutated for DIS3 harbor an increased mutational burden and a pervasive overexpression of pro-inflammatory interferon, correlating with the accumulation of DNA:RNA hybrids. We propose DIS3 loss in myeloma to be a driving force for tumorigenesis via DNA:RNA hybrid-dependent enhanced genome instability and increased mutational rate. At the same time, DIS3 loss represents a liability that might be therapeutically exploited in patients whose cancer cells harbor DIS3 mutations.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Ribonucleases/metabolismo , Reparo de DNA por Recombinação , Recombinação Homóloga , Instabilidade Genômica , Reparo do DNA , DNA/metabolismo , RNA , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo
6.
Nat Commun ; 11(1): 4828, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32973141

RESUMO

ATR responds to mechanical stress at the nuclear envelope and mediates envelope-associated repair of aberrant topological DNA states. By combining microscopy, electron microscopic analysis, biophysical and in vivo models, we report that ATR-defective cells exhibit altered nuclear plasticity and YAP delocalization. When subjected to mechanical stress or undergoing interstitial migration, ATR-defective nuclei collapse accumulating nuclear envelope ruptures and perinuclear cGAS, which indicate loss of nuclear envelope integrity, and aberrant perinuclear chromatin status. ATR-defective cells also are defective in neuronal migration during development and in metastatic dissemination from circulating tumor cells. Our findings indicate that ATR ensures mechanical coupling of the cytoskeleton to the nuclear envelope and accompanying regulation of envelope-chromosome association. Thus the repertoire of ATR-regulated biological processes extends well beyond its canonical role in triggering biochemical implementation of the DNA damage response.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Núcleo Celular/metabolismo , Estresse Mecânico , Citoesqueleto de Actina , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Encéfalo , Cromatina , Citoplasma , Citoesqueleto/metabolismo , Dano ao DNA , Camundongos Knockout , Metástase Neoplásica , Neurogênese , Membrana Nuclear/metabolismo
7.
Nat Cell Biol ; 21(10): 1286-1299, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31570834

RESUMO

Damage-induced long non-coding RNAs (dilncRNA) synthesized at DNA double-strand breaks (DSBs) by RNA polymerase II are necessary for DNA-damage-response (DDR) focus formation. We demonstrate that induction of DSBs results in the assembly of functional promoters that include a complete RNA polymerase II preinitiation complex, MED1 and CDK9. Absence or inactivation of these factors causes a reduction in DDR foci both in vivo and in an in vitro system that reconstitutes DDR events on nucleosomes. We also show that dilncRNAs drive molecular crowding of DDR proteins, such as 53BP1, into foci that exhibit liquid-liquid phase-separation condensate properties. We propose that the assembly of DSB-induced transcriptional promoters drives RNA synthesis, which stimulates phase separation of DDR factors in the shape of foci.


Assuntos
Quinase 9 Dependente de Ciclina/genética , Reparo do DNA , DNA/genética , Subunidade 1 do Complexo Mediador/metabolismo , Transcrição Gênica , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular Tumoral , Quinase 9 Dependente de Ciclina/metabolismo , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Regulação da Expressão Gênica , Células HEK293 , Células HeLa , Histonas/genética , Histonas/metabolismo , Humanos , Subunidade 1 do Complexo Mediador/genética , Osteoblastos/citologia , Osteoblastos/metabolismo , Regiões Promotoras Genéticas , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transdução de Sinais , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
8.
Chemistry ; 25(33): 7948-7952, 2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-30985041

RESUMO

Curcumin has chemopreventative properties against a variety of tumours, but has poor bioavailability. Here, two new bis-cyclometallated iridium(III) complexes have been prepared, featuring the natural product curcumin (CUR) or its reduced form, tetrahydrocurcumin (THC), as bidentate, anionic O O-binding ligands. The iridium THC complex is highly luminescent in deoxygenated solution and efficiently generates singlet oxygen under aerated conditions, whereas in the CUR analogue, other non-radiative decay pathways are competitive. The complexes are rapidly taken up by a variety of human tumour cell lines from solutions of micromolar concentration. They show negligible cytotoxicity in the absence of irradiation. When briefly irradiated with visible light, Ir-THC becomes highly phototoxic, inducing rapid apoptosis within 2 h. The results show the high potential of such complexes as sensitizers in photodynamic therapy (PDT).

9.
Mol Cancer Ther ; 17(11): 2451-2461, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30135216

RESUMO

Glioblastoma (GB) is the most lethal, aggressive, and diffuse brain tumor. The main challenge for successful treatment is targeting the cancer stem cell (CSC) subpopulation responsible for tumor origin, progression, and recurrence. Chloride Intracellular Channel 1 (CLIC1), highly expressed in CSCs, is constitutively present in the plasma membrane where it is associated with chloride ion permeability. In vitro, CLIC1 inhibition leads to a significant arrest of GB CSCs in G1 phase of the cell cycle. Furthermore, CLIC1 knockdown impairs tumor growth in vivo Here, we demonstrate that CLIC1 membrane localization and function is specific for GB CSCs. Mesenchymal stem cells (MSC) do not show CLIC1-associated chloride permeability, and inhibition of CLIC1 protein function has no influence on MSC cell-cycle progression. Investigation of the basic functions of GB CSCs reveals a constitutive state of oxidative stress and cytoplasmic alkalinization compared with MSCs. Both intracellular oxidation and cytoplasmic pH changes have been reported to affect CLIC1 membrane functional expression. We now report that in CSCs these three elements are temporally linked during CSC G1-S transition. Impeding CLIC1-mediated chloride current prevents both intracellular ROS accumulation and pH changes. CLIC1 membrane functional impairment results in GB CSCs resetting from an allostatic tumorigenic condition to a homeostatic steady state. In contrast, inhibiting NADPH oxidase and NHE1 proton pump results in cell death of both GB CSCs and MSCs. Our results show that CLIC1 membrane protein is crucial and specific for GB CSC proliferation, and is a promising pharmacologic target for successful brain tumor therapies. Mol Cancer Ther; 17(11); 2451-61. ©2018 AACR.


Assuntos
Neoplasias Encefálicas/patologia , Canais de Cloreto/metabolismo , Fase G1 , Glioblastoma/patologia , Células-Tronco Neoplásicas/patologia , Espécies Reativas de Oxigênio/metabolismo , Fase S , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Proliferação de Células , Ciclina D1/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Pessoa de Meia-Idade , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/metabolismo , Células-Tronco Neoplásicas/metabolismo , Trocador 1 de Sódio-Hidrogênio/antagonistas & inibidores , Trocador 1 de Sódio-Hidrogênio/metabolismo , Fatores de Tempo
10.
Sci Transl Med ; 2(44): 44ra57, 2010 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-20702856

RESUMO

Antigen-presenting dendritic cells (DCs) trigger the activation of cytotoxic CD8 T cells that target and eliminate cells with the antigen on their surface. Although DCs usually pick up and process antigens themselves, they can also receive peptide antigens from other cells via gap junctions. We demonstrate here that infection with Salmonella can induce, in both human and murine melanoma cells, the up-regulation of connexin 43 (Cx43), a ubiquitous protein that forms gap junctions and that is normally lost during melanoma progression. Bacteria-treated melanoma cells can establish functional gap junctions with adjacent DCs. After bacterial infection, these gap junctions transferred preprocessed antigenic peptides from the tumor cells to the DCs, which then presented those peptides on their surface. These peptides activated cytotoxic T cells against the tumor antigen, which could control the growth of distant uninfected tumors. Melanoma cells in which Cx43 had been silenced, when infected in vivo with bacteria, failed to elicit a cytotoxic antitumor response, indicating that this Cx43 mechanism is the principal one used in vivo for the generation of antitumor responses. The Cx43-dependent cross-presentation pathway is more effective than standard protocols of DC loading (peptide, tumor lysates, or apoptotic bodies) for generating DC-based tumor vaccines that both inhibit existing tumors and prevent tumor establishment. In conclusion, we exploited an antimicrobial response present in tumor cells to activate cytotoxic CD8 T cells specific for tumor-generated peptides that could directly recognize and kill tumor cells.


Assuntos
Antígenos de Neoplasias/imunologia , Apresentação Cruzada/imunologia , Junções Comunicantes/metabolismo , Melanoma/imunologia , Melanoma/patologia , Salmonella/imunologia , Animais , Apresentação de Antígeno/imunologia , Conexina 43/metabolismo , Células Dendríticas/imunologia , Feminino , Corantes Fluorescentes/metabolismo , Humanos , Interferon gama/imunologia , Linfonodos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Fagocitose , RNA Interferente Pequeno/metabolismo , Infecções por Salmonella/imunologia
11.
Oncogene ; 21(24): 3872-8, 2002 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-12032825

RESUMO

Correlative evidence links stress, accumulation of oxidative cellular damage and ageing in lower organisms and in mammals. We investigated their mechanistic connections in p66Shc knockout mice, which are characterized by increased resistance to oxidative stress and extended life span. We report that p66Shc acts as a downstream target of the tumour suppressor p53 and is indispensable for the ability of stress-activated p53 to induce elevation of intracellular oxidants, cytochrome c release and apoptosis. Other functions of p53 are not influenced by p66Shc expression. In basal conditions, p66Shc-/- and p53-/- cells have reduced amounts of intracellular oxidants and oxidation-damaged DNA. We propose that steady-state levels of intracellular oxidants and oxidative damage are genetically determined and regulated by a stress-induced signal transduction pathway involving p53 and p66Shc.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Adaptadoras de Transporte Vesicular , Antioxidantes/farmacologia , Apoptose , Dano ao DNA , Oxirredução , Proteínas/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , 8-Hidroxi-2'-Desoxiguanosina , Animais , Células Cultivadas , Grupo dos Citocromos c/metabolismo , Desoxiguanosina/análogos & derivados , Desoxiguanosina/farmacologia , Deleção de Genes , Luciferases/metabolismo , Camundongos , Camundongos Knockout , Estresse Oxidativo , Oxigênio/metabolismo , Reação em Cadeia da Polimerase , Ligação Proteica , Espécies Reativas de Oxigênio , Proteínas Adaptadoras da Sinalização Shc , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src , Ativação Transcricional , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA