Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Lancet Haematol ; 10(3): e203-e212, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36858677

RESUMO

BACKGROUND: Patients with precursors to multiple myeloma are dichotomised as having monoclonal gammopathy of undetermined significance or smouldering multiple myeloma on the basis of monoclonal protein concentrations or bone marrow plasma cell percentage. Current risk stratifications use laboratory measurements at diagnosis and do not incorporate time-varying biomarkers. Our goal was to develop a monoclonal gammopathy of undetermined significance and smouldering multiple myeloma stratification algorithm that utilised accessible, time-varying biomarkers to model risk of progression to multiple myeloma. METHODS: In this retrospective, multicohort study, we included patients who were 18 years or older with monoclonal gammopathy of undetermined significance or smouldering multiple myeloma. We evaluated several modelling approaches for predicting disease progression to multiple myeloma using a training cohort (with patients at Dana-Farber Cancer Institute, Boston, MA, USA; annotated from Nov, 13, 2019, to April, 13, 2022). We created the PANGEA models, which used data on biomarkers (monoclonal protein concentration, free light chain ratio, age, creatinine concentration, and bone marrow plasma cell percentage) and haemoglobin trajectories from medical records to predict progression from precursor disease to multiple myeloma. The models were validated in two independent validation cohorts from National and Kapodistrian University of Athens (Athens, Greece; from Jan 26, 2020, to Feb 7, 2022; validation cohort 1), University College London (London, UK; from June 9, 2020, to April 10, 2022; validation cohort 1), and Registry of Monoclonal Gammopathies (Czech Republic, Czech Republic; Jan 5, 2004, to March 10, 2022; validation cohort 2). We compared the PANGEA models (with bone marrow [BM] data and without bone marrow [no BM] data) to current criteria (International Myeloma Working Group [IMWG] monoclonal gammopathy of undetermined significance and 20/2/20 smouldering multiple myeloma risk criteria). FINDINGS: We included 6441 patients, 4931 (77%) with monoclonal gammopathy of undetermined significance and 1510 (23%) with smouldering multiple myeloma. 3430 (53%) of 6441 participants were female. The PANGEA model (BM) improved prediction of progression from smouldering multiple myeloma to multiple myeloma compared with the 20/2/20 model, with a C-statistic increase from 0·533 (0·480-0·709) to 0·756 (0·629-0·785) at patient visit 1 to the clinic, 0·613 (0·504-0·704) to 0·720 (0·592-0·775) at visit 2, and 0·637 (0·386-0·841) to 0·756 (0·547-0·830) at visit three in validation cohort 1. The PANGEA model (no BM) improved prediction of smouldering multiple myeloma progression to multiple myeloma compared with the 20/2/20 model with a C-statistic increase from 0·534 (0·501-0·672) to 0·692 (0·614-0·736) at visit 1, 0·573 (0·518-0·647) to 0·693 (0·605-0·734) at visit 2, and 0·560 (0·497-0·645) to 0·692 (0·570-0·708) at visit 3 in validation cohort 1. The PANGEA models improved prediction of monoclonal gammopathy of undetermined significance progression to multiple myeloma compared with the IMWG rolling model at visit 1 in validation cohort 2, with C-statistics increases from 0·640 (0·518-0·718) to 0·729 (0·643-0·941) for the PANGEA model (BM) and 0·670 (0·523-0·729) to 0·879 (0·586-0·938) for the PANGEA model (no BM). INTERPRETATION: Use of the PANGEA models in clinical practice will allow patients with precursor disease to receive more accurate measures of their risk of progression to multiple myeloma, thus prompting for more appropriate treatment strategies. FUNDING: SU2C Dream Team and Cancer Research UK.


Assuntos
Gamopatia Monoclonal de Significância Indeterminada , Mieloma Múltiplo , Humanos , Feminino , Masculino , Estudos Retrospectivos , Algoritmos , Creatinina
2.
Cancer Discov ; 13(2): 348-363, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36477267

RESUMO

Multiple myeloma (MM) develops from well-defined precursor stages; however, invasive bone marrow (BM) biopsy limits screening and monitoring strategies for patients. We enumerated circulating tumor cells (CTC) from 261 patients (84 monoclonal gammopathy of undetermined significance, 155 smoldering multiple myeloma, and 22 MM), with neoplastic cells detected in 84%. We developed a novel approach, MinimuMM-seq, which enables the detection of translocations and copy-number abnormalities through whole-genome sequencing of highly pure CTCs. Application to CTCs in a cohort of 51 patients, 24 with paired BM, was able to detect 100% of clinically reported BM biopsy events and could replace molecular cytogenetics for diagnostic yield and risk classification. Longitudinal sampling of CTCs in 8 patients revealed major clones could be tracked in the blood, with clonal evolution and shifting dynamics of subclones over time. Our findings provide proof of concept that CTC detection and genomic profiling could be used clinically for monitoring and managing disease in MM. SIGNIFICANCE: In this study, we established an approach enabling the enumeration and sequencing of CTCs to replace standard molecular cytogenetics. CTCs harbored the same pathognomonic MM abnormalities as BM plasma cells. Longitudinal sampling of serial CTCs was able to track clonal dynamics over time and detect the emergence of high-risk genetic subclones. This article is highlighted in the In This Issue feature, p. 247.


Assuntos
Mieloma Múltiplo , Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/patologia , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Sequência de Bases , Medula Óssea , Sequenciamento Completo do Genoma
3.
Lancet Haematol ; 9(5): e340-e349, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35344689

RESUMO

BACKGROUND: Prevalence estimates for monoclonal gammopathy of undetermined significance (MGUS) are based on predominantly White study populations screened by serum protein electrophoresis supplemented with immunofixation electrophoresis. A prevalence of 3% is reported for MGUS in the general population of European ancestry aged 50 years or older. MGUS prevalence is two times higher in individuals of African descent or with a family history of conditions related to multiple myeloma. We aimed to evaluate the prevalence and clinical implications of monoclonal gammopathies in a high-risk US population screened by quantitative mass spectrometry. METHODS: We used quantitative matrix-assisted laser desorption ionisation-time of flight (MALDI-TOF) mass spectrometry and EXENT-iQ software to screen for and quantify monoclonal gammopathies in serum from 7622 individuals who consented to the PROMISE screening study between Feb 26, 2019, and Nov 4, 2021, and the Mass General Brigham Biobank (MGBB) between July 28, 2010, and July 1, 2021. M-protein concentrations at the monoclonal gammopathy of indeterminate potential (MGIP) level were confirmed by liquid chromatography mass spectrometry testing. 6305 (83%; 2211 from PROMISE, 4094 from MGBB) of 7622 participants in the cohorts were at high risk for developing a monoclonal gammopathy on the basis of Black race or a family history of haematological malignancies and fell within the eligible high-risk age range (30 years or older for PROMISE cohort and 18 years or older for MGBB cohort); those over 18 years were also eligible if they had two or more family members with a blood cancer (PROMISE cohort). Participants with a plasma cell malignancy diagnosed before screening were excluded. Longitudinal clinical data were available for MGBB participants with a median follow-up time from serum sample screening of 4·5 years (IQR 2·4-6·7). The PROMISE study is registered with ClinicalTrials.gov, NCT03689595. FINDINGS: The median age at time of screening was 56·0 years (IQR 46·8-64·1). 5013 (66%) of 7622 participants were female, 2570 (34%) male, and 39 (<1%) unknown. 2439 (32%) self-identified as Black, 4986 (65%) as White, 119 (2%) as other, and 78 (1%) unknown. Using serum protein electrophoresis with immunofixation electrophoresis, the MGUS prevalence was 6% (101 of 1714) in high-risk individuals aged 50 years or older. Using mass spectrometry, we observed a total prevalence of monoclonal gammopathies of 43% (1788 of 4207) in this group. We termed monoclonal gammopathies below the clinical immunofixation electrophoresis detection level (<0·2 g/L) MGIPs, to differentiate them from those with higher concentrations, termed mass-spectrometry MGUS, which had a 13% (592 of 4207) prevalence by mass spectrometry in high-risk individuals aged 50 years or older. MGIP was predominantly of immunoglobulin M isotype, and its prevalence increased with age (19% [488 of 2564] for individuals aged <50 years, 29% [1464 of 5058] for those aged ≥50 years, and 37% [347 of 946] for those aged ≥70 years). Mass-spectrometry MGUS prevalence increased with age (5% [127 of 2564] for individuals aged <50 years, 13% [678 of 5058] for those aged ≥50 years, and 18% [173 of 946] for those aged ≥70 years) and was higher in men (314 [12%] of 2570) compared with women (485 [10%] 5013; p=0·0002), whereas MGIP prevalence did not differ significantly by gender. In those aged 50 years or older, the prevalence of mass spectrometry was significantly higher in Black participants (224 [17%] of 1356) compared with the controls (p=0·0012) but not in those with family history (368 [13%] of 2851) compared with the controls (p=0·1008). Screen-detected monoclonal gammopathies correlated with increased all-cause mortality in MGBB participants (hazard ratio 1·55, 95% CI 1·16-2·08; p=0·0035). All monoclonal gammopathies were associated with an increased likelihood of comorbidities, including myocardial infarction (odds ratio 1·60, 95% CI 1·26-2·02; p=0·00016 for MGIP-high and 1·39, 1·07-1·80; p=0·015 for mass-spectrometry MGUS). INTERPRETATION: We detected a high prevalence of monoclonal gammopathies, including age-associated MGIP, and made more precise estimates of mass-spectrometry MGUS compared with conventional gel-based methods. The use of mass spectrometry also highlighted the potential hidden clinical significance of MGIP. Our study suggests the association of monoclonal gammopathies with a variety of clinical phenotypes and decreased overall survival. FUNDING: Stand Up To Cancer Dream Team, the Multiple Myeloma Research Foundation, and National Institutes of Health.


Assuntos
Gamopatia Monoclonal de Significância Indeterminada , Mieloma Múltiplo , Paraproteinemias , Estudos de Coortes , Feminino , Humanos , Masculino , Espectrometria de Massas , Gamopatia Monoclonal de Significância Indeterminada/epidemiologia , Mieloma Múltiplo/epidemiologia , Paraproteinemias/diagnóstico , Paraproteinemias/epidemiologia , Prevalência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA