Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Physiol Rev ; 104(2): 659-725, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37589393

RESUMO

Acute myocardial infarction (AMI) is the leading cause of cardiovascular death and remains the most common cause of heart failure. Reopening of the occluded artery, i.e., reperfusion, is the only way to save the myocardium. However, the expected benefits of reducing infarct size are disappointing due to the reperfusion paradox, which also induces specific cell death. These ischemia-reperfusion (I/R) lesions can account for up to 50% of final infarct size, a major determinant for both mortality and the risk of heart failure (morbidity). In this review, we provide a detailed description of the cell death and inflammation mechanisms as features of I/R injury and cardioprotective strategies such as ischemic postconditioning as well as their underlying mechanisms. Due to their biological properties, the use of mesenchymal stromal/stem cells (MSCs) has been considered a potential therapeutic approach in AMI. Despite promising results and evidence of safety in preclinical studies using MSCs, the effects reported in clinical trials are not conclusive and even inconsistent. These discrepancies were attributed to many parameters such as donor age, in vitro culture, and storage time as well as injection time window after AMI, which alter MSC therapeutic properties. In the context of AMI, future directions will be to generate MSCs with enhanced properties to limit cell death in myocardial tissue and thereby reduce infarct size and improve the healing phase to increase postinfarct myocardial performance.


Assuntos
Insuficiência Cardíaca , Células-Tronco Mesenquimais , Infarto do Miocárdio , Humanos , Infarto do Miocárdio/terapia , Infarto do Miocárdio/patologia , Miocárdio/metabolismo , Fenômenos Fisiológicos Cardiovasculares , Insuficiência Cardíaca/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia
2.
Stem Cell Res Ther ; 13(1): 167, 2022 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-35461240

RESUMO

BACKGROUND: Mesenchymal Stromal Cells (MSC) have been widely used for their therapeutic properties in many clinical applications including myocardial infarction. Despite promising preclinical results and evidences of safety and efficacy in phases I/ II, inconsistencies in phase III trials have been reported. In a previous study, we have shown using MSC derived from the bone marrow of PPARß/δ (Peroxisome proliferator-activated receptors ß/δ) knockout mice that the acute cardioprotective properties of MSC during the first hour of reperfusion are PPARß/δ-dependent but not related to the anti-inflammatory effect of MSC. However, the role of the modulation of PPARß/δ expression on MSC cardioprotective and anti-apoptotic properties has never been investigated. OBJECTIVES: The aim of this study was to investigate the role of PPARß/δ modulation (inhibition or activation) in MSC therapeutic properties in vitro and ex vivo in an experimental model of myocardial infarction. METHODS AND RESULTS: Naïve MSC and MSC pharmacologically activated or inhibited for PPARß/δ were challenged with H2O2. Through specific DNA fragmentation quantification and qRT-PCR experiments, we evidenced in vitro an increased resistance to oxidative stress in MSC pre-treated by the PPARß/δ agonist GW0742 versus naïve MSC. In addition, PPARß/δ-priming allowed to reveal the anti-apoptotic effect of MSC on cardiomyocytes and endothelial cells in vitro. When injected during reperfusion, in an ex vivo heart model of myocardial infarction, 3.75 × 105 PPARß/δ-primed MSC/heart provided the same cardioprotective efficiency than 7.5 × 105 naïve MSC, identified as the optimal dose in our experimental model. This enhanced short-term cardioprotective effect was associated with an increase in both anti-apoptotic effects and the number of MSC detected in the left ventricular wall at 1 h of reperfusion. By contrast, PPARß/δ inhibition in MSC before their administration in post-ischemic hearts during reperfusion decreased their cardioprotective effects. CONCLUSION: Altogether these results revealed that PPARß/δ-primed MSC exhibit an increased resistance to oxidative stress and enhanced anti-apoptotic properties on cardiac cells in vitro. PPARß/δ-priming appears as an innovative strategy to enhance the cardioprotective effects of MSC and to decrease the therapeutic injected doses. These results could be of major interest to improve MSC efficacy for the cardioprotection of injured myocardium in AMI patients.


Assuntos
Células-Tronco Mesenquimais , Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , PPAR delta , PPAR beta , Animais , Células Endoteliais/metabolismo , Peróxido de Hidrogênio , Células-Tronco Mesenquimais/metabolismo , Camundongos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/terapia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/terapia , PPAR delta/agonistas , PPAR delta/genética , PPAR delta/metabolismo , PPAR beta/agonistas , PPAR beta/genética , PPAR beta/metabolismo , Tiazóis
3.
Sci Rep ; 10(1): 18116, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33093627

RESUMO

Reperfusion therapy during myocardial infarction (MI) leads to side effects called ischemia-reperfusion (IR) injury for which no treatment exists. While most studies have targeted the intrinsic apoptotic pathway to prevent IR injury with no successful clinical translation, we evidenced recently the potent cardioprotective effect of the anti-apoptotic Tat-DAXXp (TD) peptide targeting the FAS-dependent extrinsic pathway. The aim of the present study was to evaluate TD long term cardioprotective effects against IR injury in a MI mouse model. TD peptide (1 mg/kg) was administered in mice subjected to MI (TD; n = 21), 5 min prior to reperfusion, and were clinically followed-up during 6 months after surgery. Plasma cTnI concentration evaluated 24 h post-MI was 70%-decreased in TD (n = 16) versus Ctrl (n = 20) mice (p***). Strain echocardiography highlighted a 24%-increase (p****) in the ejection fraction mean value in TD-treated (n = 12) versus Ctrl mice (n = 17) during the 6 month-period. Improved cardiac performance was associated to a 54%-decrease (p**) in left ventricular fibrosis at 6 months in TD (n = 16) versus Ctrl (n = 20). In conclusion, targeting the extrinsic pathway with TD peptide at the onset of reperfusion provided long-term cardioprotection in a mouse model of myocardial IR injury by improving post-MI cardiac performance and preventing cardiac remodeling.


Assuntos
Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Fragmentos de Peptídeos/farmacologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia
4.
Cardiovasc Res ; 116(3): 633-644, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31147690

RESUMO

AIMS: Regulated cell death is a main contributor of myocardial ischaemia-reperfusion (IR) injury during acute myocardial infarction. In this context, targeting apoptosis could be a potent therapeutical strategy. In a previous study, we showed that DAXX (death-associated protein) was essential for transducing the FAS-dependent apoptotic signal during IR injury. The present study aims at evaluating the cardioprotective effects of a synthetic peptide inhibiting FAS:DAXX interaction. METHODS AND RESULTS: An interfering peptide was engineered and then coupled to the Tat cell penetrating peptide (Tat-DAXXp). Its internalization and anti-apoptotic properties were demonstrated in primary cardiomyocytes. Importantly, an intravenous bolus injection of Tat-DAXXp (1 mg/kg) 5 min before reperfusion in a murine myocardial IR model decreased infarct size by 48% after 24 h of reperfusion. In addition, Tat-DAXXp was still efficient after a 30-min delayed administration, and was completely degraded and eliminated within 24 h thereby reducing risks of potential side effects. Importantly, Tat-DAXXp reduced mouse early post-infarction mortality by 67%. Mechanistically, cardioprotection was supported by both anti-apoptotic and pro-survival effects, and an improvement of myocardial functional recovery as evidenced in ex vivo experiments. CONCLUSIONS: Our study demonstrates that a single dose of Tat-DAXXp injected intravenously at the onset of reperfusion leads to a strong cardioprotection in vivo by inhibiting IR injury validating Tat-DAXXp as a promising candidate for therapeutic application.


Assuntos
Apoptose/efeitos dos fármacos , Peptídeos Penetradores de Células/farmacologia , Proteínas Correpressoras/antagonistas & inibidores , Chaperonas Moleculares/antagonistas & inibidores , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Proteínas Correpressoras/metabolismo , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL , Chaperonas Moleculares/metabolismo , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Transdução de Sinais , Receptor fas/metabolismo
5.
Sci Rep ; 7(1): 14701, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29089640

RESUMO

MLC901, a traditional Chinese medicine containing a cocktail of active molecules, both reduces cerebral infarction and improves recovery in patients with ischemic stroke. The aim of this study was to evaluate the acute and long-term benefits of MLC901 in ischemic and reperfused mouse hearts. Ex vivo, under physiological conditions, MLC901 did not show any modification in heart rate and contraction amplitude. However, upon an ischemic insult, MLC901 administration during reperfusion, improved coronary flow in perfused hearts. In vivo, MLC901 (4 µg/kg) intravenous injection 5 minutes before reperfusion provided a decrease in both infarct size (49.8%) and apoptosis (49.9%) after 1 hour of reperfusion. Akt and ERK1/2 survival pathways were significantly activated in the myocardium of those mice. In the 4-month clinical follow-up upon an additional continuous per os administration, MLC901 treatment decreased cardiac injury as revealed by a 45%-decrease in cTnI plasmatic concentrations and an improved cardiac performance assessed by echocardiography. A histological analysis revealed a 64%-decreased residual scar fibrosis and a 44%-increased vascular density in the infarct region. This paper demonstrates that MLC901 treatment was able to provide acute and long-term cardioprotective effects in a murine model of myocardial ischemia-reperfusion injury in vivo.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Coração/efeitos dos fármacos , Medicina Tradicional Chinesa , Infarto do Miocárdio/tratamento farmacológico , Miocárdio/patologia , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fibrose/tratamento farmacológico , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Oncogênica v-akt/metabolismo , Fluxo Sanguíneo Regional/efeitos dos fármacos , Transdução de Sinais , Troponina I/sangue
6.
J Control Release ; 256: 79-91, 2017 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-28411182

RESUMO

Small interfering RNAs (siRNAs) present a strong therapeutic potential because of their ability to inhibit the expression of any desired protein. Recently, we developed the retro-inverso amphipathic RICK peptide as novel non-covalent siRNA carrier. This peptide is able to form nanoparticles (NPs) by self-assembling with the siRNA resulting in the fully siRNA protection based on its protease resistant peptide sequence. With regard to an in vivo application, we investigated here the influence of the polyethylene glycol (PEG) grafting to RICK NPs on their in vitro and in vivo siRNA delivery properties. A detailed structural study shows that PEGylation did not alter the NP formation (only decrease in zeta potential) regardless of the used PEGylation rates. Compared to the native RICK:siRNA NPs, low PEGylation rates (≤20%) of the NPs did not influence their cellular internalization capacity as well as their knock-down specificity (over-expressed or endogenous system) in vitro. Because the behavior of PEGylated NPs could differ in their in vivo application, we analyzed the repartition of fluorescent labeled NPs injected at the one-cell stage in zebrafish embryos as well as their pharmacokinetic (PK) profile after administration to mice. After an intra-cardiac injection of the PEGylated NPs, we could clearly determine that 20% PEG-RICK NPs reduce significantly liver and kidney accumulation. NPs with 20% PEGylation constitutes a modular, easy-to-handle drug delivery system which could be adapted to other types of functional moieties to develop safe and biocompatible delivery systems for the clinical application of RNAi-based cancer therapeutics.


Assuntos
Peptídeos Penetradores de Células/administração & dosagem , Nanopartículas/administração & dosagem , Polietilenoglicóis/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/administração & dosagem , Animais , Peptídeos Penetradores de Células/química , Cisteína/administração & dosagem , Cisteína/química , Embrião não Mamífero , Luciferases/genética , Masculino , Camundongos Endogâmicos C57BL , Nanopartículas/química , Polietilenoglicóis/química , RNA Interferente Pequeno/química , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/química , Propriedades de Superfície , Peixe-Zebra
7.
Cardiovasc Res ; 113(6): 644-655, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28453728

RESUMO

AIMS: In a previous study using a genome-wide microarray strategy, we identified metabotropic glutamate receptor 1 (mGluR1) as a putative cardioprotective candidate in ischaemic postconditioning (PostC). In the present study, we investigated the role of cardiac mGluR1 receptors during cardioprotection against myocardial ischaemia-reperfusion injury in the mouse myocardium. METHODS AND RESULTS: mGluR1 activation by glutamate administered 5 min before reperfusion in C57Bl/6 mice subjected to a myocardial ischaemia protocol strongly decreased both infarct size and DNA fragmentation measured at 24 h reperfusion. This cardioprotective effect was mimicked by the mGluR1 agonist, DHPG (10 µM), and abolished when glutamate was coinjected with the mGluR1 antagonist YM298198 (100 nM). Wortmannin (100 nM), an inhibitor of PI3-kinase, was able to prevent glutamate-induced cardioprotection. A glutamate bolus at the onset of reperfusion failed to protect the heart of mGluR1 knockout mice subjected to a myocardial ischaemia-reperfusion protocol, although PostC still protected the mGluR1 KO mice. Glutamate-treatment improved post-infarction functional recovery as evidenced by an echocardiographic study performed 15 days after treatment and by a histological evaluation of fibrosis 21 days post-treatment. Interestingly, restoration of functional mGluR1s by a PostC stimulus was evidenced at the transcriptional level. Since mGluR1s were localized at the surface membrane of cardiomyocytes, they might contribute to the cardioprotective effect of ischaemic PostC as other Gq-coupled receptors. CONCLUSION: This study provides the first demonstration that mGluR1 activation at the onset of reperfusion induces cardioprotection and might represent a putative strategy to prevent ischaemia-reperfusion injury.


Assuntos
Agonistas de Aminoácidos Excitatórios/administração & dosagem , Glutamina/administração & dosagem , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/metabolismo , Receptores de Glutamato Metabotrópico/agonistas , Animais , Modelos Animais de Doenças , Antagonistas de Aminoácidos Excitatórios/farmacologia , Predisposição Genética para Doença , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/patologia , Fenótipo , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Glutamato Metabotrópico/deficiência , Receptores de Glutamato Metabotrópico/genética , Transdução de Sinais , Fatores de Tempo , Função Ventricular Esquerda/efeitos dos fármacos
8.
Cardiovasc Drugs Ther ; 27(4): 315-31, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23695774

RESUMO

Erythropoietin (EPO) is the main hormone that regulates erythropoiesis. Beyond its well-known hematopoietic action, EPO has diverse cellular effects in non-hematopoietic tissues. It has been shown to inhibit apoptosis by activating pro-survival pathways in the myocardium, to mobilize endothelial progenitor cells and to inhibit migration of inflammatory cells. EPO has also been shown to have potent pro-angiogenic properties. Numerous experimental data support the cardioprotective effects of EPO in animal models of acute myocardial infarct (AMI). However, these findings are not supported by recent clinical trials designed to investigate the safety and efficacy of EPO in patients with AMI. In this article, we begin by providing a comprehensive review of the cardioprotective effects of EPO in experimental animal models and the molecular mechanisms underlying these effects. We then discuss the EPO data obtained through clinical trials. We compare similarities and differences between the animal and human studies as well as between the different clinical studies in terms of sample size and study design including the dose, the route and the timing of administration as well as confounding factors such as comorbidities and concomitant treatments. Finally, we question the gap between the experimental and the translational clinical data and propose further developments to address these discrepancies and clearly evaluate the role of EPO in the clinical setting of MI.


Assuntos
Cardiotônicos/uso terapêutico , Eritropoetina/uso terapêutico , Infarto do Miocárdio/tratamento farmacológico , Animais , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Humanos
9.
Curr Pharm Des ; 19(16): 2970-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23140457

RESUMO

Acute myocardial infarction (AMI) is a frequent and disabling disease, which is the first cause of cardiovascular mortality worldwide. Infarct size is a major determinant of myocardial functional recovery and mortality after AMI. Limitation of infarct size thus appears as an appropriate strategy to prevent post-ischemic heart failure and improve survival. Reperfusion is the only treatment recommended to reduce infarct size but despite obvious benefits, it may also have deleterious effects called ischemia-reperfusion (IR) injury including myocyte cell death. Proteins involved in the apoptosis cascade generally interact over large surfaces lacking well-defined pockets. Therefore, inhibitory peptides are optimal biomolecules to target these large protein surfaces, they are often more selective to their target than conventional small organic molecules, and they can be tailored for optimal affinity or desired metabolic property. Since peptides do not cross freely biological membranes, they are generally administered in association with cell penetrating peptides (CPPs) and with homing peptides (HPs) for selective organs or tissues targeting. As a first approach in vivo, we made use of the already known BH4 peptidic inhibitor of the mitochondrial apoptotic pathway, which showed cardioprotective properties in a murine model of AMI after a single bolus of intravenous administration. More importantly, similar peptidic strategies and tools are likely to be adaptable to many other situations in which cells have to be protected from apoptosis such as stroke or organ transplantation.


Assuntos
Infarto do Miocárdio/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Peptídeos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Cardiotônicos/administração & dosagem , Cardiotônicos/farmacocinética , Cardiotônicos/farmacologia , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/metabolismo , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Humanos , Camundongos , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miócitos Cardíacos/patologia , Peptídeos/administração & dosagem , Peptídeos/farmacocinética , Distribuição Tecidual
10.
Cardiovasc Res ; 94(2): 351-8, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22106414

RESUMO

AIMS: Myocardial infarction leads to heart failure and death. Ischaemic preconditioning (PreC) and postconditioning (PostC) reduce infarct size in animal models and human. Zac1 was identified as the only gene related to apoptosis and jointly down-regulated upon PreC and PostC. The aim of our study was to investigate the role of Zac1 down-regulation during ischaemia-reperfusion (I/R) in vivo. METHODS AND RESULTS: C57BL/6 mice were submitted to myocardial I/R injury, PreC, or PostC protocols. QPCR and immunochemistry showed that Zac1 expression was down-regulated both at the transcriptional and the protein levels upon PreC and PostC. Zac1(-/-) Knockout mice (n = 7) developed smaller infarcts (54%) than Zac1(+/+) littermates (n = 8) and decreased apoptosis (61.7%) in the ischaemic part of the left ventricle during I/R (Zac1(-/-), n = 6 vs. Zac1(+/+), n = 7; P = 0.0012). Mutants showed under control conditions a decrease of 53.9% in mRNA of Daxx, a pro-apoptotic protein playing a key role in I/R injuries (4.81 ± 0.77, n = 4 Zac1(-/-) mice vs. 10.44 ± 3.5, n = 7 Zac1(+/+) mice; P = 0.0121). CONCLUSION: Our study shows for the first time that Zac1 is down-regulated both at the transcriptional and protein levels upon PreC and PostC in wild-type mice. Moreover, inactivation of Zac1 in vivo is associated with a decreased amount of Daxx transcripts and, upon I/R injury, decreased infarct size and apoptosis. Altogether, our results show that Zac1 down-regulation plays a key role during cardioprotection against I/R injury and support the concept that cardioprotection regulates a network of interacting pro-apoptotic genes including Zac1 and Daxx.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Pós-Condicionamento Isquêmico/métodos , Precondicionamento Isquêmico Miocárdico/métodos , Infarto do Miocárdio/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/metabolismo , Fatores de Transcrição/metabolismo , Animais , Apoptose , Proteínas de Ciclo Celular/genética , Regulação para Baixo , Ecocardiografia , Genes Supressores de Tumor , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infarto do Miocárdio/genética , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/patologia , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição/genética
11.
J Control Release ; 156(2): 146-53, 2011 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-21839124

RESUMO

There is an obvious need to develop pharmacological strategies to protect the heart in patients suffering from acute myocardial infarction. Apoptosis was evidenced as a main contributor of myocardial ischemia-reperfusion (IR) injury. Our cardioprotective strategy was based on the use of four cell penetrating peptides (CPP: Tat, (RXR)4, Bpep and Pip2b) which were conjugated to the BH4-peptide, derived from the BH4 domain of the Bcl-xL anti-apoptotic protein. These CPP-BH4 conjugates were able to reduce staurosporine-induced apoptosis in primary cardiomyocytes in vitro. Although Pip2b-BH4 was more efficient in terms of cellular uptake, it was as efficient as Tat-BH4 for its anti-apoptotic activity. As required for potential therapeutic application their cardioprotective effects were evaluated in an in vivo mouse model of myocardial IR injury. Our results clearly show that a single low dose (1 mg/kg) injection of Tat-BH4 and Pip2b-BH4 administered intravenously 5 min before reperfusion was able to drastically reduce infarct size (~47%) and to inhibit apoptosis (~60%) in the left ventricle of treated mice. Importantly, these effects are not observed following the injection of CPP alone or scrambled version of BH4. This study evidences that the Pip2b CPP, designed for oligonucleotides translocation, as well as the widely used natural Tat CPP exhibit similar efficacy in vivo to deliver BH4 anti-apoptotic peptide to the reperfused myocardium and may thus become useful therapeutic tools to treat acute myocardial infarction in the clinical setting.


Assuntos
Apoptose/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Peptídeos/química , Peptídeos/uso terapêutico , Proteína bcl-X/química , Proteína bcl-X/uso terapêutico , Sequência de Aminoácidos , Animais , Linhagem Celular , Peptídeos Penetradores de Células/química , Células Cultivadas , Coração/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia
12.
Proc Natl Acad Sci U S A ; 104(7): 2519-24, 2007 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-17284589

RESUMO

The exchange factor directly activated by cAMP (Epac) is a newly discovered direct target for cAMP and a guanine-nucleotide exchange factor for the small GTPase Rap. Little is known about the neuronal functions of Epac. Here we show that activation of Epac by specific cAMP analogs or by the pituitary adenylate cyclase-activating polypeptide induces a potent activation of the Ca2+-sensitive big K+ channel, slight membrane hyperpolarization, and increased after-hyperpolarization in cultured cerebellar granule cells. These effects involve activation of Rap and p38 MAPK, which mobilizes intracellular Ca2+ stores. These findings reveal a cAMP Epac-dependent and protein kinase A-independent signaling cascade that controls neuronal excitability.


Assuntos
Cerebelo/citologia , AMP Cíclico/farmacologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Canais de Potássio Cálcio-Ativados/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Cálcio/metabolismo , Células Cultivadas , Cerebelo/metabolismo , AMP Cíclico/análogos & derivados , Humanos , Potenciais da Membrana/efeitos dos fármacos , Neurônios/fisiologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA