Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Mol Metab ; 65: 101581, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36028120

RESUMO

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is a spectrum of disease ranging from simple hepatic steatosis (NAFL) to non-alcoholic steatohepatitis (NASH) which may progress to cirrhosis and liver cancer. NAFLD is rapidly becoming a global health challenge, and there is a need for improved diagnostic- and prognostic tools and for effective pharmacotherapies to treat NASH. The molecular mechanisms of NAFLD development and progression remain incompletely understood, though ample evidence supports a role of microRNAs (miRNAs) - small non-coding RNAs regulating gene expression - in the progression of metabolic liver disease. SCOPE OF REVIEW: In this review, we summarise the currently available liver miRNA profiling studies in people with various stages of NAFLD. We further describe the mechanistic role of three of the most extensively studied miRNA species, miR-34a, miR-122 and miR-21, and highlight selected findings on novel NAFLD-linked miRNAs. We also examine the literature on exosomal microRNAs (exomiRs) as inter-hepatocellular or -organ messengers in NAFLD. Furthermore, we address the status for utilizing circulating NAFLD-associated miRNAs as minimally invasive tools for disease diagnosis, staging and prognosis as well as their potential use as NASH pharmacotherapeutic targets. Finally, we reflect on future directions for research in the miRNA field. MAJOR CONCLUSIONS: NAFLD is associated with changes in hepatic miRNA expression patterns at early, intermediate and late stages, and specific miRNA species appear to be involved in steatosis development and NAFL progression to NASH and cirrhosis. These miRNAs act either within or between hepatocytes and other liver cell types such as hepatic stellate cells and Kupffer cells or as circulating inter-organ messengers carrying signals between the liver and extra-hepatic metabolic tissues, including the adipose tissues and the cardiovascular system. Among circulating miRNAs linked to NAFLD, miR-34a, miR-122 and miR-192 are the best candidates as biomarkers for NAFLD diagnosis and staging. To date, no miRNA-targeting pharmacotherapy has been approved for the treatment of NASH, and no such therapy is currently under clinical development. Further research should be conducted to translate the contribution of miRNAs in NAFLD into innovative therapeutic strategies.


Assuntos
MicroRNAs , Hepatopatia Gordurosa não Alcoólica , Biomarcadores/metabolismo , Humanos , Cirrose Hepática , MicroRNAs/genética , MicroRNAs/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo
2.
J Physiol ; 600(14): 3313-3330, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35760527

RESUMO

Polycystic ovary syndrome (PCOS) is characterised by a hormonal imbalance affecting the reproductive and metabolic health of reproductive-aged women. Exercise is recommended as a first-line therapy for women with PCOS to improve their overall health; however, women with PCOS are resistant to the metabolic benefits of exercise training. Here, we aimed to gain insight into the mechanisms responsible for such resistance to exercise in PCOS. We employed an in vitro approach with electrical pulse stimulation (EPS) of cultured skeletal muscle cells to explore whether myotubes from women with PCOS have an altered gene expression signature in response to contraction. Following EPS, 4719 genes were differentially expressed (false discovery rate <0.05) in myotubes from women with PCOS compared to 173 in healthy women. Both groups included genes involved in skeletal muscle contraction. We also determined the effect of two transforming growth factor ß (TGFß) ligands that are elevated in plasma of women with PCOS, TGFß1 and anti-Müllerian hormone (AMH), alone and on the EPS-induced response. While AMH (30 ng/ml) had no effect, TGFß1 (5 ng/ml) induced the expression of extracellular matrix genes and impaired the exercise-like transcriptional signature in myotubes from women with and without PCOS in response to EPS by interfering with key processes related to muscle contraction, calcium transport and actin filament. Our findings suggest that while the fundamental gene expression responses of skeletal muscle to contraction is intact in PCOS, circulating factors like TGFß1 may be responsible for the impaired adaptation to exercise in women with PCOS. KEY POINTS: Gene expression responses to in vitro contraction (electrical pulse stimulation, EPS) are altered in myotubes from women with polycystic ovary syndrome (PCOS) compared to healthy controls, with an increased expression of genes related to pro-inflammatory pathways. Transforming growth factor ß1 (TGFß1) upregulates genes related to extracellular matrix remodelling and reduces the expression of contractile genes in myotubes, regardless of the donor's health status. TGFß1 alters the gene expression response to EPS, providing a possible mechanism for the impaired exercise adaptations in women with PCOS.


Assuntos
Síndrome do Ovário Policístico , Adulto , Hormônio Antimülleriano/genética , Hormônio Antimülleriano/metabolismo , Feminino , Humanos , Fibras Musculares Esqueléticas/metabolismo , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/metabolismo , Transcriptoma , Fator de Crescimento Transformador beta1/metabolismo
3.
Sci Transl Med ; 13(623): eabc7367, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34878822

RESUMO

Skeletal muscle displays remarkable plasticity upon exercise and is also one of the organs most affected by aging. Despite robust evidence that aging is associated with loss of fast-twitch (type II) muscle fibers, the underlying mechanisms remain to be elucidated. Here, we identified an exercise-induced long noncoding RNA, CYTOR, whose exercise responsiveness was conserved in human and rodents. Cytor overexpression in mouse myogenic progenitor cells enhanced myogenic differentiation by promoting fast-twitch cell fate, whereas Cytor knockdown deteriorated expression of mature type II myotubes. Skeletal muscle Cytor expression was reduced upon mouse aging, and Cytor expression in young mice was required to maintain proper muscle morphology and function. In aged mice, rescuing endogenous Cytor expression using adeno-associated virus serotype 9 delivery of CRISPRa reversed the age-related decrease in type II fibers and improved muscle mass and function. In humans, CYTOR expression correlated with type II isoform expression and was decreased in aged myoblasts. Increased CYTOR expression, mediated by a causal cis­expression quantitative trait locus located within a CYTOR skeletal muscle enhancer element, was associated with improved 6-min walk performance in aged individuals from the Helsinki Birth Cohort Study. Direct CYTOR overexpression using CRISPRa in aged human donor myoblasts enhanced expression of type II myosin isoforms. Mechanistically, Cytor reduced chromatin accessibility and occupancy at binding motifs of the transcription factor Tead1 by binding, and hence sequestering, Tead1. In conclusion, the long noncoding RNA Cytor was found to be a regulator of fast-twitch myogenesis in aging.


Assuntos
RNA Longo não Codificante , Envelhecimento/genética , Animais , Diferenciação Celular/genética , Estudos de Coortes , Humanos , Camundongos , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
4.
J Mol Endocrinol ; 68(1): 63-76, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34752415

RESUMO

Polycystic ovary syndrome (PCOS) is a common endocrine disorder associated with insulin resistance and impaired energy metabolism in skeletal muscle, the aetiology of which is currently unclear. Here, we mapped the gene expression profile of skeletal muscle from women with PCOS and determined if cultured primary myotubes retain the gene expression signature of PCOS in vivo. Transcriptomic analysis of vastus lateralis biopsies collected from PCOS women showed lower expression of genes associated with mitochondrial function, while the expression of genes associated with the extracellular matrix was higher compared to controls. Altered skeletal muscle mRNA expression of mitochondrial-associated genes in PCOS was associated with lower protein expression of mitochondrial complex II-V, but not complex I, with no difference in mitochondrial DNA content. Transcriptomic analysis of primary myotube cultures established from biopsies did not display any differentially expressed genes between controls and PCOS. Comparison of gene expression profiles in skeletal muscle biopsies and primary myotube cultures showed lower expression of mitochondrial and energy metabolism-related genes in vitro, irrespective of the group. Together, our results show that the altered mitochondrial-associated gene expression in skeletal muscle in PCOS is not preserved in cultured myotubes, indicating that the in vivo extracellular milieu, rather than genetic or epigenetic factors, may drive this alteration. Dysregulation of mitochondrial-associated genes in skeletal muscle by extracellular factors may contribute to the impaired energy metabolism associated with PCOS.


Assuntos
Suscetibilidade a Doenças , Regulação da Expressão Gênica , Genes Mitocondriais , Mitocôndrias/genética , Mitocôndrias/metabolismo , Síndrome do Ovário Policístico/etiologia , Síndrome do Ovário Policístico/metabolismo , Biomarcadores , Células Cultivadas , Análise por Conglomerados , Biologia Computacional/métodos , Variações do Número de Cópias de DNA , Feminino , Perfilação da Expressão Gênica , Glucose/metabolismo , Humanos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Síndrome do Ovário Policístico/patologia , Transcriptoma
5.
Nat Commun ; 12(1): 5948, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34642330

RESUMO

Skeletal muscle is a highly adaptable tissue and remodels in response to exercise training. Using short RNA sequencing, we determine the miRNA profile of skeletal muscle from healthy male volunteers before and after a 14-day aerobic exercise training regime. Among the exercise training-responsive miRNAs identified, miR-19b-3p was selected for further validation. Overexpression of miR-19b-3p in human skeletal muscle cells increases insulin signaling, glucose uptake, and maximal oxygen consumption, recapitulating the adaptive response to aerobic exercise training. Overexpression of miR-19b-3p in mouse flexor digitorum brevis muscle enhances contraction-induced glucose uptake, indicating that miR-19b-3p exerts control on exercise training-induced adaptations in skeletal muscle. Potential targets of miR-19b-3p that are reduced after aerobic exercise training include KIF13A, MAPK6, RNF11, and VPS37A. Amongst these, RNF11 silencing potentiates glucose uptake in human skeletal muscle cells. Collectively, we identify miR-19b-3p as an aerobic exercise training-induced miRNA that regulates skeletal muscle glucose metabolism.


Assuntos
Proteínas de Ligação a DNA/genética , Exercício Físico/fisiologia , Glucose/metabolismo , MicroRNAs/genética , Processamento de Proteína Pós-Traducional , Adulto , Animais , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Metabolismo Energético/genética , Voluntários Saudáveis , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Proteína Quinase 6 Ativada por Mitógeno/genética , Proteína Quinase 6 Ativada por Mitógeno/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Consumo de Oxigênio/genética , Fosforilação , Condicionamento Físico Animal , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais
6.
FASEB J ; 35(7): e21702, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34153130

RESUMO

Perinatal smoke/nicotine exposure alters lung development and causes asthma in exposed offspring, transmitted transgenerationally. The mechanism underlying the transgenerational inheritance of perinatal smoke/nicotine-induced asthma remains unknown, but germline epigenetic modulations may play a role. Using a well-established rat model of perinatal nicotine-induced asthma, we determined the DNA methylation pattern of spermatozoa of F1 rats exposed perinatally to nicotine in F0 gestation. To identify differentially methylated regions (DMRs), reduced representation bisulfite sequencing was performed on spermatozoa of F1 litters. The top regulated gene body and promoter DMRs were tested for lung gene expression levels, and key proteins involved in lung development and repair were determined. The overall CpG methylation in F1 sperms across gene bodies, promoters, 5'-UTRs, exons, introns, and 3'-UTRs was not affected by nicotine exposure. However, the methylation levels were different between the different genomic regions. Eighty one CpG sites, 16 gene bodies, and 3 promoter regions were differentially methylated. Gene enrichment analysis of DMRs revealed pathways involved in oxidative stress, nicotine response, alveolar and brain development, and cellular signaling. Among the DMRs, Dio1 and Nmu were the most hypermethylated and hypomethylated genes, respectively. Gene expression analysis showed that the mRNA expression and DNA methylation were incongruous. Key proteins involved in lung development and repair were significantly different (FDR < 0.05) between the nicotine and placebo-treated groups. Our data show that DNA methylation is remodeled in offspring spermatozoa upon perinatal nicotine exposure. These epigenetic alterations may play a role in transgenerational inheritance of perinatal smoke/nicotine induced asthma.


Assuntos
Metilação de DNA , Epigênese Genética , Pulmão/patologia , Nicotina/toxicidade , Agonistas Nicotínicos/toxicidade , Efeitos Tardios da Exposição Pré-Natal/patologia , Espermatozoides/metabolismo , Animais , Animais Recém-Nascidos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/genética , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Ratos , Ratos Sprague-Dawley , Espermatozoides/patologia
7.
Sci Rep ; 11(1): 9794, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33963248

RESUMO

The profound energy-expending nature of brown adipose tissue (BAT) thermogenesis makes it an attractive target tissue to combat obesity-associated metabolic disorders. While cold exposure is the strongest inducer of BAT activity, the temporal mechanisms tuning BAT adaptation during this activation process are incompletely understood. Here we show that the scaffold protein Afadin is dynamically regulated by cold in BAT, and participates in cold acclimation. Cold exposure acutely increases Afadin protein levels and its phosphorylation in BAT. Knockdown of Afadin in brown pre-adipocytes does not alter adipogenesis but restricts ß3-adrenegic induction of thermogenic genes expression and HSL phosphorylation in mature brown adipocytes. Consistent with a defect in thermogenesis, an impaired cold tolerance was observed in fat-specific Afadin knockout mice. However, while Afadin depletion led to reduced Ucp1 mRNA induction by cold, stimulation of Ucp1 protein was conserved. Transcriptomic analysis revealed that fat-specific ablation of Afadin led to decreased functional enrichment of gene sets controlling essential metabolic functions at thermoneutrality in BAT, whereas it led to an altered reprogramming in response to cold, with enhanced enrichment of different pathways related to metabolism and remodeling. Collectively, we demonstrate a role for Afadin in supporting the adrenergic response in brown adipocytes and BAT function.


Assuntos
Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/metabolismo , Temperatura Baixa , Regulação da Expressão Gênica , Cinesinas/biossíntese , Miosinas/biossíntese , Termogênese , Animais , Cinesinas/genética , Camundongos , Camundongos Knockout , Miosinas/genética
8.
Mol Metab ; 44: 101137, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33285300

RESUMO

OBJECTIVE: Increasing adaptive thermogenesis by stimulating browning in white adipose tissue is a promising method of improving metabolic health. However, the molecular mechanisms underlying this transition remain elusive. Our study examined the molecular determinants driving the differentiation of precursor cells into thermogenic adipocytes. METHODS: In this study, we conducted temporal high-resolution proteomic analysis of subcutaneous white adipose tissue (scWAT) after cold exposure in mice. This was followed by loss- and gain-of-function experiments using siRNA-mediated knockdown and CRISPRa-mediated induction of gene expression, respectively, to evaluate the function of the transcriptional regulator Y box-binding protein 1 (YBX1) during adipogenesis of brown pre-adipocytes and mesenchymal stem cells. Transcriptomic analysis of mesenchymal stem cells following induction of endogenous Ybx1 expression was conducted to elucidate transcriptomic events controlled by YBX1 during adipogenesis. RESULTS: Our proteomics analysis uncovered 509 proteins differentially regulated by cold in a time-dependent manner. Overall, 44 transcriptional regulators were acutely upregulated following cold exposure, among which included the cold-shock domain containing protein YBX1, peaking after 24 h. Cold-induced upregulation of YBX1 also occurred in brown adipose tissue, but not in visceral white adipose tissue, suggesting a role of YBX1 in thermogenesis. This role was confirmed by Ybx1 knockdown in brown and brite preadipocytes, which significantly impaired their thermogenic potential. Conversely, inducing Ybx1 expression in mesenchymal stem cells during adipogenesis promoted browning concurrent with an increased expression of thermogenic markers and enhanced mitochondrial respiration. At a molecular level, our transcriptomic analysis showed that YBX1 regulates a subset of genes, including the histone H3K9 demethylase Jmjd1c, to promote thermogenic adipocyte differentiation. CONCLUSION: Our study mapped the dynamic proteomic changes of murine scWAT during browning and identified YBX1 as a novel factor coordinating the genomic mechanisms by which preadipocytes commit to brite/beige lineage.


Assuntos
Tecido Adiposo Branco/metabolismo , Termogênese/genética , Termogênese/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Adipócitos Marrons/metabolismo , Adipogenia , Tecido Adiposo Marrom/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Regulação da Expressão Gênica , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Masculino , Células-Tronco Mesenquimais , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Proteômica , Gordura Subcutânea/metabolismo , Transcriptoma , Regulação para Cima
9.
Nat Commun ; 11(1): 2695, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32483258

RESUMO

Obesity and type 2 diabetes (T2D) are metabolic disorders influenced by lifestyle and genetic factors that are characterized by insulin resistance in skeletal muscle, a prominent site of glucose disposal. Numerous genetic variants have been associated with obesity and T2D, of which the majority are located in non-coding DNA regions. This suggests that most variants mediate their effect by altering the activity of gene-regulatory elements, including enhancers. Here, we map skeletal muscle genomic enhancer elements that are dynamically regulated after exposure to the free fatty acid palmitate or the inflammatory cytokine TNFα. By overlapping enhancer positions with the location of disease-associated genetic variants, and resolving long-range chromatin interactions between enhancers and gene promoters, we identify target genes involved in metabolic dysfunction in skeletal muscle. The majority of these genes also associate with altered whole-body metabolic phenotypes in the murine BXD genetic reference population. Thus, our combined genomic investigations identified genes that are involved in skeletal muscle metabolism.


Assuntos
Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Elementos Facilitadores Genéticos , Resistência à Insulina/genética , Músculo Esquelético/metabolismo , Obesidade/genética , Obesidade/metabolismo , Animais , Linhagem Celular , Cromatina/genética , Cromatina/metabolismo , Diabetes Mellitus Tipo 2/patologia , Feminino , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Masculino , Camundongos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Obesidade/patologia , Ácido Palmítico/farmacologia , Fatores de Iniciação de Peptídeos/genética , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Fator de Necrose Tumoral alfa/farmacologia
10.
J Clin Endocrinol Metab ; 104(12): 6155-6170, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31390009

RESUMO

CONTEXT: Polycystic ovary syndrome (PCOS) is a chronic disease affecting reproductive function and whole-body metabolism. Although the etiology is unclear, emerging evidence indicates that the epigenetics may be a contributing factor. OBJECTIVE: To determine the role of global and genome-wide epigenetic modifications in specific immune cells in PCOS compared with controls and whether these could be related to clinical features of PCOS. DESIGN: Cross-sectional study. PARTICIPANTS: Women with (n = 17) or without PCOS (n = 17). SETTING: Recruited from the general community. MAIN OUTCOME MEASURES: Isolated peripheral blood mononuclear cells were analyzed using multicolor flow cytometry methods to determine global DNA methylation levels in a cell-specific fashion. Transcriptomic and genome-wide DNA methylation analyses were performed on T helper cells using RNA sequencing and reduced representation bisulfite sequencing. RESULTS: Women with PCOS had lower global DNA methylation in monocytes (P = 0.006) and in T helper (P = 0.004), T cytotoxic (P = 0.004), and B cells (P = 0.03). Specific genome-wide DNA methylation analysis of T helper cells from women with PCOS identified 5581 differentially methylated CpG sites. Functional gene ontology enrichment analysis showed that genes located at the proximity of differentially methylated CpG sites belong to pathways related to reproductive function and immune cell function. However, these genes were not altered at the transcriptomic level. CONCLUSIONS: It was shown that PCOS is associated with global and gene-specific DNA methylation remodeling in a cell type-specific manner. Further investigation is warranted to determine whether epigenetic reprogramming of immune cells is important in determining the different phenotypes of PCOS.


Assuntos
Epigênese Genética/fisiologia , Leucócitos Mononucleares/metabolismo , Linfócitos/metabolismo , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/imunologia , Reprodução/genética , Adolescente , Adulto , Estudos de Casos e Controles , Reprogramação Celular/genética , Reprogramação Celular/imunologia , Estudos Transversais , Metilação de DNA/fisiologia , Feminino , Predisposição Genética para Doença , Humanos , Sistema Imunitário/metabolismo , Infertilidade Feminina/genética , Infertilidade Feminina/imunologia , Pessoa de Meia-Idade , Síndrome do Ovário Policístico/metabolismo , Reprodução/imunologia , Adulto Jovem
11.
FASEB J ; 33(5): 6269-6280, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30768368

RESUMO

Paternal preconceptional high-fat diet (HFD) alters whole-body glucose and energy homeostasis over several generations, which may be mediated by altered transcriptomic profiles of metabolic organs. We investigated the effect of paternal HFD on the hepatic transcriptomic and metabolic signatures of female grand-offspring. Paternal HFD strongly impacted the liver transcriptome of the second-generation offspring. Gene set enrichment analysis (GSEA) revealed grandpaternal-HFD altered the TNF-α signaling via NFκB pathway, independent of the grand-offspring's diet. Reduction in the hepatic cytokine levels, including the TNF-α, as well as NFκB content and activity, suggest that the basal inflammatory response in F2 rats is disturbed. GSEA also show altered expression of various genes annotated to the fatty acid metabolism. Grandpaternal-HFD reduced G0/G1 switch gene 2 (G0S2) expression, concomitant with reduced hepatic triglyceride content in F2 rats. In conclusion, the hepatic transcriptome is altered in grand-offspring from HFD-fed grandfathers. Altered TNF-α/NFκB signaling and levels of inflammatory cytokines indicate grandpaternal HFD impacts hepatic immunometabolism. Overall, our findings indicate that paternal exposure to environmental factors transgenerationally reprograms metabolism in a tissue-specific manner, affecting the development and health of future generations.-De Castro Barbosa, T., Alm, P. S., Krook, A., Barrès, R., Zierath, J. R. Paternal high-fat diet transgenerationally impacts hepatic immunometabolism.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Fígado/metabolismo , Herança Paterna , Transcriptoma , Animais , Epigênese Genética , Feminino , Masculino , NF-kappa B/genética , NF-kappa B/metabolismo , Ratos , Ratos Sprague-Dawley , Triglicerídeos/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
12.
Int J Obes (Lond) ; 43(2): 306-318, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29511320

RESUMO

BACKGROUND: Deterioration of the adipogenic potential of preadipocytes may contribute to adipose tissue dysfunction in obesity and type 2 diabetes (T2D). Here, we hypothesized that extracellular factors in obesity epigenetically reprogram adipogenesis potential and metabolic function of preadipocytes. METHODS: The transcriptomic profile of visceral adipose tissue preadipocytes collected from Lean, Obese and Obese with T2D was assessed throughout in vitro differentiation using RNA sequencing. Reduced Representation Bisulfite Sequencing was used to establish the genome-wide DNA methylation profile of human preadipocytes and 3T3-L1 preadipocytes treated by the inflammatory cytokine Tumour Necrosis Factor-α (TNF-α) or palmitate. RESULTS: While preadipocytes from all obese subjects (Obese+Obese T2D), compared to those of Lean, were transcriptionally different in response to differentiation in culture, preadipocytes from Obese T2D showed impaired insulin signalling and a further transcriptomic shift towards altered adipocyte function. Cultures with a lower expression magnitude of adipogenic genes throughout differentiation (PLIN1, CIDEC, FABP4, ADIPOQ, LPL, PDK4, APOE, LIPE, FABP3, LEP, RBP4 and CD36) were associated with DNA methylation remodelling at genes controlling insulin sensitivity and adipocytokine signalling pathways. Prior incubation of 3T3-L1 preadipocytes with TNF-α or palmitate markedly altered insulin responsiveness and metabolic function in the differentiated adipocytes, and remodelled DNA methylation and gene expression at specific genes, notably related to PPAR signalling. CONCLUSIONS: Our findings that preadipocytes retain the memory of the donor in culture and can be reprogrammed by extracellular factors support a mechanism by which adipocyte precursors are epigenetically reprogrammed in vivo. Epigenetic reprogramming of preadipocytes represents a mechanism by which metabolic function of visceral adipose tissue may be affected in the long term by past exposure to obesity- or T2D-specific factors.


Assuntos
Adipócitos , Tecido Adiposo , Diabetes Mellitus Tipo 2 , Epigênese Genética , Obesidade , Adipócitos/citologia , Adipócitos/metabolismo , Adipócitos/fisiologia , Tecido Adiposo/citologia , Tecido Adiposo/fisiologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Epigênese Genética/genética , Epigênese Genética/fisiologia , Perfilação da Expressão Gênica , Humanos , Obesidade/complicações , Obesidade/genética , Transcriptoma/genética
13.
FASEB J ; 33(2): 2719-2731, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30303739

RESUMO

Remodeling of the gut microbiota is implicated in various metabolic and inflammatory diseases of the gastrointestinal tract. We hypothesized that the gut microbiota affects the DNA methylation profile of intestinal epithelial cells (IECs) which could, in turn, alter intestinal function. In this study, we used mass spectrometry and methylated DNA capture to respectively investigate global and genome-wide DNA methylation of intestinal epithelial cells from germ-free (GF) and conventionally raised mice. In colonic IECs from GF mice, DNA was markedly hypermethylated. This was associated with a dramatic loss of ten-eleven-translocation activity, a lower DNA methyltransferase activity and lower circulating levels of the 1-carbon metabolite, folate. At the gene level, we found an enrichment for differentially methylated regions proximal to genes regulating the cytotoxicity of NK cells (false-discovery rate < 8.9E-6), notably genes regulating the cross-talk between NK cells and target cells, such as members of the NK group 2 member D ligand superfamily Raet. This distinct epigenetic signature was associated with a marked decrease in Raet1 expression and a loss of CD56+/CD45+ cells in the intestine of GF mice. Thus, our results indicate that altered activity of methylation-modifying enzymes in GF mice influences the IEC epigenome and modulates the crosstalk between IECs and NK cells. Epigenetic reprogramming of IECs may modulate intestinal function in diseases associated with altered gut microbiota.-Poupeau, A., Garde, C., Sulek, K., Citirikkaya, K., Treebak, J. T., Arumugam, M., Simar, D., Olofsson, L. E., Bäckhed, F., Barrès, R. Genes controlling the activation of natural killer lymphocytes are epigenetically remodeled in intestinal cells from germ-free mice.


Assuntos
Biomarcadores/análise , Epigênese Genética , Células Epiteliais/imunologia , Microbioma Gastrointestinal , Regulação da Expressão Gênica , Vida Livre de Germes , Células Matadoras Naturais/imunologia , Animais , Metilação de DNA , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Feminino , Intestinos/citologia , Intestinos/microbiologia , Intestinos/fisiologia , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/microbiologia , Masculino , Camundongos
14.
Clin Epigenetics ; 10(1): 138, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30400990

RESUMO

BACKGROUND: Cancer treatments have substantially improved childhood cancer survival but are accompanied by long-term complications, notably chronic inflammatory diseases. We hypothesize that cancer treatments could lead to long-term epigenetic changes in immune cells, resulting in increased prevalence of inflammatory diseases in cancer survivors. RESULTS: To test this hypothesis, we established the epigenetic and transcriptomic profiles of immune cells from 44 childhood cancer survivors (CCS, > 16 years old) on full remission (> 5 years) who had received chemotherapy alone or in combination with total body irradiation (TBI) and hematopoietic stem cell transplant (HSCT). We found that more than 10 years post-treatment, CCS treated with TBI/HSCT showed an altered DNA methylation signature in T cell, particularly at genes controlling immune and inflammatory processes and oxidative stress. DNA methylation remodeling in T cell was partially associated with chronic expression changes of nearby genes, increased frequency of type 1 cytokine-producing T cell, elevated systemic levels of these cytokines, and over-activation of related signaling pathways. Survivors exposed to TBI/HSCT were further characterized by an Epigenetic-Aging-Signature of T cell consistent with accelerated epigenetic aging. To investigate the potential contribution of irradiation to these changes, we established two cell culture models. We identified that radiation partially recapitulated the immune changes observed in survivors through a bystander effect that could be mediated by circulating factors. CONCLUSION: Cancer treatments, in particular TBI/HSCT, are associated with long-term immune disturbances. We propose that epigenetic remodeling of immune cells following cancer therapy augments inflammatory- and age-related diseases, including metabolic complications, in childhood cancer survivors.


Assuntos
Envelhecimento/genética , Metilação de DNA , Epigenômica/métodos , Perfilação da Expressão Gênica/métodos , Linfócitos T/imunologia , Adolescente , Sobreviventes de Câncer , Criança , Pré-Escolar , Epigênese Genética , Feminino , Humanos , Lactente , Recém-Nascido , Células Jurkat , Estresse Oxidativo , Linfócitos T/química
15.
Epigenomics ; 10(8): 1033-1050, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29671347

RESUMO

AIM: To determine the genomic mechanisms by which adipose tissue responds to acute and chronic exercise. METHODS: We profiled the transcriptomic and epigenetic response to acute exercise in human adipose tissue collected before and after endurance training. RESULTS: Although acute exercises were performed at same relative intensities, the magnitude of transcriptomic changes after acute exercise was reduced by endurance training. DNA methylation remodeling induced by acute exercise was more prominent in trained versus untrained state. We found an overlap between gene expression and DNA methylation changes after acute exercise for 32 genes pre-training and six post-training, notably at adipocyte-specific genes. CONCLUSION: Training status differentially affects the epigenetic and transcriptomic response to acute exercise in human adipose tissue.


Assuntos
Tecido Adiposo/fisiologia , Metilação de DNA , Exercício Físico/fisiologia , Transcriptoma , Adulto , Epigênese Genética , Genômica , Humanos , Macrófagos/fisiologia , Masculino , Monócitos/fisiologia , Adulto Jovem
16.
Mol Metab ; 14: 1-11, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29525406

RESUMO

BACKGROUND: Developmental programming of the embryo is controlled by genetic information but also dictated by epigenetic information contained in spermatozoa. Lifestyle and environmental factors not only influence health in one individual but can also affect the phenotype of the following generations. This is mediated via epigenetic inheritance i.e., gametic transmission of environmentally-driven epigenetic information to the offspring. Evidence is accumulating that preconceptional exposure to certain lifestyle and environmental factors, such as diet, physical activity, and smoking, affects the phenotype of the next generation through remodeling of the epigenetic blueprint of spermatozoa. SCOPE OF REVIEW: This review will summarize current knowledge about the different epigenetic signals in sperm that are responsive to environmental and lifestyle factors and are capable of affecting embryonic development and the phenotype of the offspring later in life. MAJOR CONCLUSIONS: Like somatic cells, the epigenome of spermatozoa has proven to be dynamically reactive to a wide variety of environmental and lifestyle stressors. The functional consequence on embryogenesis and phenotype of the next generation remains largely unknown. However, strong evidence of environmentally-driven sperm-borne epigenetic factors, which are capable of altering the phenotype of the next generation, is emerging on a large scale.


Assuntos
Meio Ambiente , Epigênese Genética , Espermatozoides/metabolismo , Animais , Montagem e Desmontagem da Cromatina , Metilação de DNA , Humanos , Masculino , Estresse Fisiológico
17.
Diabetes ; 65(12): 3573-3584, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27650856

RESUMO

Exposure to ionizing radiation increases the risk of chronic metabolic disorders such as insulin resistance and type 2 diabetes later in life. We hypothesized that irradiation reprograms the epigenome of metabolic progenitor cells, which could account for impaired metabolism after cancer treatment. C57Bl/6 mice were treated with a single dose of irradiation and subjected to high-fat diet (HFD). RNA sequencing and reduced representation bisulfite sequencing were used to create transcriptomic and epigenomic profiles of preadipocytes and skeletal muscle satellite cells collected from irradiated mice. Mice subjected to total body irradiation showed alterations in glucose metabolism and, when challenged with HFD, marked hyperinsulinemia. Insulin signaling was chronically disrupted in skeletal muscle and adipose progenitor cells collected from irradiated mice and differentiated in culture. Epigenomic profiling of skeletal muscle and adipose progenitor cells from irradiated animals revealed substantial DNA methylation changes, notably for genes regulating the cell cycle, glucose/lipid metabolism, and expression of epigenetic modifiers. Our results show that total body irradiation alters intracellular signaling and epigenetic pathways regulating cell proliferation and differentiation of skeletal muscle and adipose progenitor cells and provide a possible mechanism by which irradiation used in cancer treatment increases the risk for metabolic disease later in life.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Músculo Esquelético/metabolismo , Radiação Ionizante , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Peso Corporal/efeitos da radiação , Células Cultivadas , Biologia Computacional , Epigenômica , Immunoblotting , Resistência à Insulina/efeitos da radiação , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/efeitos dos fármacos , Espécies Reativas de Oxigênio , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de RNA
18.
Nat Rev Endocrinol ; 12(8): 441-51, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27312865

RESUMO

Epigenetic changes are caused by biochemical regulators of gene expression that can be transferred across generations or through cell division. Epigenetic modifications can arise from a variety of environmental exposures including undernutrition, obesity, physical activity, stress and toxins. Transient epigenetic changes across the entire genome can influence metabolic outcomes and might or might not be heritable. These modifications direct and maintain the cell-type specific gene expression state. Transient epigenetic changes can be driven by DNA methylation and histone modification in response to environmental stressors. A detailed understanding of the epigenetic signatures of insulin resistance and the adaptive response to exercise might identify new therapeutic targets that can be further developed to improve insulin sensitivity and prevent obesity. This Review focuses on the current understanding of mechanisms by which lifestyle factors affect the epigenetic landscape in type 2 diabetes mellitus and obesity. Evidence from the past few years about the potential mechanisms by which diet and exercise affect the epigenome over several generations is discussed.


Assuntos
Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/fisiopatologia , Epigênese Genética , Predisposição Genética para Doença , Estilo de Vida , Metilação de DNA , Dieta , Exercício Físico , Feminino , Heterozigoto , Humanos , Masculino , Papel (figurativo)
19.
Cell Metab ; 23(2): 369-78, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26669700

RESUMO

Obesity is a heritable disorder, with children of obese fathers at higher risk of developing obesity. Environmental factors epigenetically influence somatic tissues, but the contribution of these factors to the establishment of epigenetic patterns in human gametes is unknown. Here, we hypothesized that weight loss remodels the epigenetic signature of spermatozoa in human obesity. Comprehensive profiling of the epigenome of sperm from lean and obese men showed similar histone positioning, but small non-coding RNA expression and DNA methylation patterns were markedly different. In a separate cohort of morbidly obese men, surgery-induced weight loss was associated with a dramatic remodeling of sperm DNA methylation, notably at genetic locations implicated in the central control of appetite. Our data provide evidence that the epigenome of human spermatozoa dynamically changes under environmental pressure and offers insight into how obesity may propagate metabolic dysfunction to the next generation.


Assuntos
Cirurgia Bariátrica , Epigênese Genética , Obesidade/genética , Obesidade/cirurgia , Adulto , Sistema Nervoso Central/metabolismo , Ilhas de CpG/genética , Metilação de DNA/genética , Regulação da Expressão Gênica , Histonas/metabolismo , Humanos , Masculino , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Magreza/genética , Redução de Peso , Adulto Jovem
20.
J Endocrinol ; 225(2): 77-88, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25767056

RESUMO

Erythropoietin (EPO) ameliorates glucose metabolism through mechanisms not fully understood. In this study, we investigated the effect of EPO on glucose metabolism and insulin signaling in skeletal muscle. A 2-week EPO treatment of rats fed with a high-fat diet (HFD) improved fasting glucose levels and glucose tolerance, without altering total body weight or retroperitoneal fat mass. Concomitantly, EPO partially rescued insulin-stimulated AKT activation, reduced markers of oxidative stress, and restored heat-shock protein 72 expression in soleus muscles from HFD-fed rats. Incubation of skeletal muscle cell cultures with EPO failed to induce AKT phosphorylation and had no effect on glucose uptake or glycogen synthesis. We found that the EPO receptor gene was expressed in myotubes, but was undetectable in soleus. Together, our results indicate that EPO treatment improves glucose tolerance but does not directly activate the phosphorylation of AKT in muscle cells. We propose that the reduced systemic inflammation or oxidative stress that we observed after treatment with EPO could contribute to the improvement of whole-body glucose metabolism.


Assuntos
Eritropoetina/metabolismo , Intolerância à Glucose/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Glucose/metabolismo , Intolerância à Glucose/enzimologia , Intolerância à Glucose/genética , Proteínas de Choque Térmico HSP72/genética , Proteínas de Choque Térmico HSP72/metabolismo , Humanos , Insulina/metabolismo , Masculino , Camundongos , Músculo Esquelético/enzimologia , Músculo Esquelético/metabolismo , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores da Eritropoetina/genética , Receptores da Eritropoetina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA