Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Plants (Basel) ; 12(16)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37631199

RESUMO

Cistus albidus L. (Cistaceae) is a medicinal plant that has been used therapeutically since ancient times in the Mediterranean basin for its important pharmacological properties. The ability of C. albidus to produce large quantities of a wide range of natural metabolites makes it an attractive source of raw material. The main constituents with bioactive functions that exert pharmacological effects are terpenes and polyphenols, with more than 200 identified compounds. The purpose of this review is to offer a detailed account of the botanical, ethnological, phytochemical, and pharmacological characteristics of C. albidus with the aim of encouraging additional pharmaceutical investigations into the potential therapeutic benefits of this medicinal plant. This review was carried out using organized searches of the available literature up to July 2023. A detailed analysis of C. albidus confirms its traditional use as a medicinal plant. The outcome of several studies suggests a deeper involvement of certain polyphenols and terpenes in multiple mechanisms such as inflammation and pain, with a potential application focus on neurodegenerative diseases and disorders. Other diseases such as prostate cancer and leukemia have already been researched with promising results for this plant, for which no intoxication has been reported in humans.

3.
Antioxidants (Basel) ; 11(5)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35624852

RESUMO

Chestnut peels are a poorly characterized, underexploited by-product of the agri-food industry. This raw material is rich in bioactive compounds, primarily polyphenols and tannins, that can be extracted using different green technologies. Scaling up the process for industrial production is a fundamental step for the valorization of the extract. In this study, subcritical water extraction was investigated to maximize the extraction yield and polyphenol content. Lab-scale procedures have been scaled up to the semi-industrial level as well as the downstream processes, namely, concentration and spray drying. The extract antioxidant capacity was tested using in vitro and cellular assays as well as a preliminary evaluation of its antiadipogenic activity. The temperature, extraction time, and water/solid ratio were optimized, and the extract obtained under these conditions displayed a strong antioxidant capacity both in in vitro and cellular tests. Encouraging data on the adipocyte model showed the influence of chestnut extracts on adipocyte maturation and the consequent potential antiadipogenic activity. Chestnut peel extracts characterized by strong antioxidant power and potential antiadipogenic activity were efficiently obtained by removing organic solvents. These results prompted further studies on fraction enrichment by ultra- and nanofiltration. The semi-industrial eco-friendly extraction process and downstream benefits reported here may open the door to production and commercialization.

4.
Int J Mol Sci ; 24(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36613498

RESUMO

Interest in plant compounds has increased, given recent evidence regarding their role in human health due to their pleiotropic effects. For example, plant bioactive compounds present in food products, including polyphenols, are associated with preventive effects in various diseases, such as cancer or inflammation. Breast and colorectal cancers are among the most commonly diagnosed cancers globally. Although appreciable advances have been made in treatments, new therapeutic approaches are still needed. Thus, in this study, up to 28 olive leaf extracts were obtained during different seasons and using different drying temperatures. The influence of these conditions on total polyphenolic content (measured using Folin-Ciocalteu assays), antioxidant activity (using Trolox Equivalent Antioxidant Capacity and Ferric Reducing Ability of Plasma assays) and antiproliferative capacity (using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, MTT assays) was tested in breast and colorectal cancer cells. Increased phenolic composition and antioxidant and antiproliferative capacity are noted in the extracts obtained from leaves harvested in autumn, followed by summer, spring and winter. Regarding drying conditions, although there is not a general trend, conditions using the highest temperatures lead to the optimal phenolic content and antioxidant and antiproliferative activities in most cases. These results confirm previously published studies and provide evidence in support of the influence of both harvesting and drying conditions on the biological activity of olive leaf extracts.


Assuntos
Neoplasias , Olea , Humanos , Antioxidantes/farmacologia , Temperatura , Estações do Ano , Fenóis/farmacologia , Fenóis/análise , Extratos Vegetais/farmacologia , Folhas de Planta/química
5.
Front Pharmacol ; 12: 625946, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34456713

RESUMO

The present study shows the putative antiproliferative mechanism of action of the previously analytically characterized nudibranch extract (Dolabella auricularia, NB) and its different effects in colon cancer cells vs. nontumor colon cells. NB extract increased the accumulation of reactive oxygen species (ROS) and increased endoplasmic reticulum (ER) stress via stimulation of the unfolded protein response. Stress scavengers, N-acetylcysteine (NAC) and 4-phenylbutyric acid (4-PBA), decreased the stress induced by NB. The results showed that NB extract increased ER stress through overproduction of ROS in superinvasive colon cancer cells, decreased their resistance threshold, and produced a nonreturn level of ER stress, causing DNA damage and cell cycle arrest, which prevented them from achieving hyperproliferative capacity and migrating to and invading other tissues. On the contrary, NB extract had a considerably lower effect on nontumor human colon cells, suggesting a selective effect related to stress balance homeostasis. In conclusion, our results confirm that the growth and malignancy of colon cancer cells can be decreased by marine compounds through the modification of one of the most potent resistance mechanisms present in tumor cells; this characteristic differentiates cancer cells from nontumor cells in terms of stress balance.

6.
Sci Rep ; 11(1): 588, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436818

RESUMO

Antimicrobial resistance poses a serious threat to human health worldwide. Plant compounds may help to overcome antibiotic resistance due to their potential resistance modifying capacity. Several botanical extracts and pure polyphenolic compounds were screened against a panel of eleven bacterial isolates with clinical relevance. The two best performing agents, Cistus salviifolius (CS) and Punica granatum (GP) extracts, were tested against 100 Staphylococcus aureus clinical isolates, which resulted in average MIC50 values ranging between 50-80 µg/mL. CS extract, containing hydrolyzable tannins and flavonoids such as myricetin and quercetin derivatives, demonstrated higher activity against methicillin-resistant S. aureus isolates. GP extract, which contained mostly hydrolyzable tannins, such as punicalin and punicalagin, was more effective against methicillin-sensitive S. aureus isolates. Generalized linear model regression and multiple correspondence statistical analysis revealed a correlation between a higher susceptibility to CS extract with bacterial resistance to beta-lactam antibiotics and quinolones. On the contrary, susceptibility to GP extract was related with bacteria sensitive to quinolones and oxacillin. Bacterial susceptibility to GP and CS extracts was linked to a resistance profile based on cell wall disruption mechanism. In conclusion, a differential antibacterial activity against S. aureus isolates was observed depending on antibiotic resistance profile of isolates and extract polyphenolic composition, which may lead to development of combinatorial therapies including antibiotics and botanical extracts.


Assuntos
Antibacterianos , Cistus/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Polifenóis/análise , Polifenóis/farmacologia , Punica granatum/química , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/química , Farmacorresistência Bacteriana , Redução da Medicação , Extratos Vegetais/isolamento & purificação , Staphylococcus aureus/isolamento & purificação
7.
Biomedicines ; 8(10)2020 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-33050619

RESUMO

Drug-resistant bacteria pose a serious threat to human health worldwide. Current antibiotics are losing efficacy and new antimicrobial agents are urgently needed. Living organisms are an invaluable source of antimicrobial compounds. The antimicrobial activity of the most representative natural products of animal, bacterial, fungal and plant origin are reviewed in this paper. Their activity against drug-resistant bacteria, their mechanisms of action, the possible development of resistance against them, their role in current medicine and their future perspectives are discussed. Electronic databases such as PubMed, Scopus and ScienceDirect were used to search scientific contributions until September 2020, using relevant keywords. Natural compounds of heterogeneous origins have been shown to possess antimicrobial capabilities, including against antibiotic-resistant bacteria. The most commonly found mechanisms of antimicrobial action are related to protein biosynthesis and alteration of cell walls and membranes. Various natural compounds, especially phytochemicals, have shown synergistic capacity with antibiotics. There is little literature on the development of specific resistance mechanisms against natural antimicrobial compounds. New technologies such as -omics, network pharmacology and informatics have the potential to identify and characterize new natural antimicrobial compounds in the future. This knowledge may be useful for the development of future therapeutic strategies.

8.
Antioxidants (Basel) ; 9(3)2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32245070

RESUMO

Overexposure to solar ultraviolet (UV) radiation is the major cause of a variety of cutaneous disorders, including sunburn, photoaging, and skin cancers. UVB radiation (290-320 nm) causes multiple forms of DNA damage, p53 induction, protein and lipid oxidation, and the generation of harmful reactive oxygen species (ROS). In recent years, botanicals containing polyphenols with antioxidant and anti-inflammatory properties as skin photoprotective agents have emerged. This study evaluated the protective effects of two formulations against UVB-induced damage in a skin cell model. One of the formulations (F2) contained a combination of citrus and olive extracts and the other one (F1) also contained a rosemary extract. The antioxidant capacity of both formulations was estimated by different in vitro methods, and the cell viability, intracellular ROS generation, mitochondrial depolarization, and DNA damage were studied in UVB-irradiated human keratinocytes. Both formulations exerted photoprotective effects on skin cells and decreased mitochondrial depolarization and DNA damage. F1 which contained iridoids, rosemary diterpenes, glycosides and aglycones of citrus flavanones, and monohydroxylated flavones exhibited higher cellular photoprotective effects and mitochondrial membrane potential restoration, as well as an enhanced capacity to decrease DNA double strand breaks and the DNA damage response. In contrast, F2, which contained mostly iridoids, citrus flavanone aglycones, and mono- and dihydroxylated flavones, exhibited a higher capacity to decrease intracellular ROS generation and radical scavenging capacity related to metal ion chelation. Both formulations showed a similar capability to decrease the number of apoptotic cells upon UVB radiation. Based on our results and those of others, we postulate that the stronger capacity of F1 to protect against UVB-induced DNA damage in human keratinocytes is related to the presence of rosemary diterpenes and citrus flavanone aglycones. Nevertheless, the presence of the dihydroxylated flavones in F2 may contribute to inhibiting the generation of metal-related free radicals. To confirm the efficacy of these formulations as potential candidates for oral/topical photoprotection, human trials are required to circumvent the limitations of the cellular model.

9.
Curr Med Chem ; 27(15): 2576-2606, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30295182

RESUMO

BACKGROUND: Multi-drug-resistant bacteria such as Methicillin-Resistant Staphylococcus aureus (MRSA) disseminate rapidly amongst patients in healthcare facilities and suppose an increasingly important cause of community-associated infections and associated mortality. The development of effective therapeutic options against resistant bacteria is a public health priority. Plant polyphenols are structurally diverse compounds that have been used for centuries for medicinal purposes, including infections treatment and possess, not only antimicrobial activity, but also antioxidant, anti-inflammatory and anticancer activities among others. Based on the existing evidence on the polyphenols' antibacterial capacity, polyphenols may be postulated as an alternative or complementary therapy for infectious diseases. OBJECTIVE: To review the antimicrobial activity of plant polyphenols against Gram-positive bacteria, especially against S. aureus and its resistant strains. Determine the main bacterial molecular targets of polyphenols and their potential mechanism of action. METHODOLOGY: The most relevant reports on plant polyphenols' antibacterial activity and their putative molecular targets were studied. We also performed virtual screening of thousand different polyphenols against proteins involved in the peptidoglycan biosynthesis to find potential valuable bioactive compounds. The bibliographic information used in this review was obtained from MEDLINE via PubMed. RESULTS: Several polyphenols: phenolic acids, flavonoids (especially flavonols), tannins, lignans, stilbenes and combinations of these in botanical mixtures, have exhibited significant antibacterial activity against resistant and non-resistant Gram-positive bacteria at low µg/mL range MIC values. Their mechanism of action is quite diverse, targeting cell wall, lipid membrane, membrane receptors and ion channels, bacteria metabolites and biofilm formation. Synergic effects were also demonstrated for some combinations of polyphenols and antibiotics. CONCLUSION: Plant polyphenols mean a promising source of antibacterial agents, either alone or in combination with existing antibiotics, for the development of new antibiotic therapies.


Assuntos
Antibacterianos/uso terapêutico , Polifenóis , Humanos , Testes de Sensibilidade Microbiana , Extratos Vegetais
10.
Nutrients ; 11(12)2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31817196

RESUMO

Lippia citriodora (LC) represents a complex plant-derived source of polyphenols and iridoids that has shown beneficial properties against obesity-related metabolic disorders. The complete extract and its major compound, verbascoside, have shown AMPK-activating capacity in cell and animal models. In this work, we aimed to elucidate the contribution of the different compounds present in the LC extract on the AMPK activation capacity of the whole extract. Semipreparative reversed-phase high-performance liquid chromatography coupled to electrospray ionization time-of-flight mass spectrometry (RP-HPLC-ESI-TOF-MS) was used to identify the major compounds with bioassay-guided fractionation in an adipocyte cell model for the measurement of AMPK activity. Twenty-two compounds were identified and purified almost to homogeneity in 16 fractions, and three compounds, namely verbascoside, luteolin-7-diglucuronide and loganic acid, showed the highest AMPK-activating capacity. The synergy study using the checkerboard and fractional inhibitory concentration index (FICI) methods exhibited synergistic behavior between loganic acid and luteolin-7-diglucuronide. Molecular docking experiments revealed that these three compounds might act as direct agonists of AMPK, binding to the AMP binding sites of the gamma subunit and/or the different sites of the interaction zones between the gamma and beta subunits. Although our findings conclude that the bioactivity of the extract is mainly due to verbascoside, the synergy found between loganic acid and luteolin-7-diglucuronide deserves further research aimed to develop optimized combinations of polyphenols as a new nutritional strategy against obesity-related metabolic disorders.


Assuntos
Proteínas Quinases Ativadas por AMP , Lippia , Doenças Metabólicas/metabolismo , Compostos Fitoquímicos , Polifenóis , Células 3T3-L1 , Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Camundongos , Simulação de Acoplamento Molecular , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Polifenóis/química , Polifenóis/isolamento & purificação , Polifenóis/farmacologia
11.
Biomolecules ; 9(12)2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31861238

RESUMO

Chronic obstructive pulmonary disease (COPD) is characterized by abnormal inflammation and impaired airway immunity, providing an opportunistic platform for nontypeable Haemophilus influenzae (NTHi) infection. In this context, therapies targeting not only overactive inflammation without significant adverse effects, but also infection are of interest. Increasing evidence suggests that polyphenols, plant secondary metabolites with anti-inflammatory and antimicrobial properties, may be protective. Here, a Cistus salviifolius plant extract containing quercetin, myricetin, and punicalagin was shown to reduce NTHi viability. Analysis of these polyphenols revealed that quercetin has a bactericidal effect on NTHi, does not display synergies, and that bacteria do not seem to develop resistance. Moreover, quercetin lowered NTHi airway epithelial invasion through a mechanism likely involving inhibition of Akt phosphorylation, and reduced the expression of bacterially-induced proinflammatory markers il-8, cxcl-1, il-6, pde4b, and tnfα. We further tested quercetin's effect on NTHi murine pulmonary infection, showing a moderate reduction in bacterial counts and significantly reduced expression of proinflammatory genes, compared to untreated mice. Quercetin administration during NTHi infection on a zebrafish septicemia infection model system showed a bacterial clearing effect without signs of host toxicity. In conclusion, this study highlights the therapeutic potential of the xenohormetic molecule quercetin against NTHi infection.


Assuntos
Antibacterianos/farmacologia , Infecções por Haemophilus/tratamento farmacológico , Haemophilus influenzae/efeitos dos fármacos , Extratos Vegetais/farmacologia , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Quercetina/farmacologia , Células A549 , Animais , Antibacterianos/química , Antibacterianos/isolamento & purificação , Cistus/química , Modelos Animais de Doenças , Feminino , Infecções por Haemophilus/microbiologia , Humanos , Imunomodulação/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Doença Pulmonar Obstrutiva Crônica/microbiologia , Quercetina/química , Quercetina/isolamento & purificação , Células Tumorais Cultivadas , Peixe-Zebra
12.
Biomolecules ; 9(12)2019 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-31771155

RESUMO

Marine compounds are a potential source of new anticancer drugs. In this study, the antiproliferative effects of 20 invertebrate marine extracts on three colon cancer cell models (HGUE-C-1, HT-29, and SW-480) were evaluated. Extracts from two nudibranchs (Phyllidia varicosa, NA and Dolabella auricularia, NB), a holothurian (Pseudocol ochirus violaceus, PS), and a soft coral (Carotalcyon sp., CR) were selected due to their potent cytotoxic capacities. The four marine extracts exhibited strong antiproliferative effects and induced cell cycle arrest at the G2/M transition, which evolved into early apoptosis in the case of the CR, NA, and NB extracts and necrotic cell death in the case of the PS extract. All the extracts induced, to some extent, intracellular ROS accumulation, mitochondrial depolarization, caspase activation, and DNA damage. The compositions of the four extracts were fully characterized via HPLC-ESI-TOF-MS analysis, which identified up to 98 compounds. We propose that, among the most abundant compounds identified in each extract, diterpenes, steroids, and sesqui- and seterterpenes (CR); cembranolides (PS); diterpenes, polyketides, and indole terpenes (NA); and porphyrin, drimenyl cyclohexanone, and polar steroids (NB) might be candidates for the observed activity. We postulate that reactive oxygen species (ROS) accumulation is responsible for the subsequent DNA damage, mitochondrial depolarization, and cell cycle arrest, ultimately inducing cell death by either apoptosis or necrosis.


Assuntos
Antineoplásicos/farmacologia , Organismos Aquáticos/química , Neoplasias do Colo/metabolismo , Neoplasias do Colo/fisiopatologia , Invertebrados/química , Mitocôndrias/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Dano ao DNA/efeitos dos fármacos , Diterpenos/química , Diterpenos/isolamento & purificação , Diterpenos/farmacologia , Mitocôndrias/metabolismo
13.
Medicines (Basel) ; 6(3)2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31340520

RESUMO

Cancer is still a global challenge worldwide with a high impact not only on human health, causing morbidity and mortality, but also on economics [...].

14.
Int J Mol Sci ; 20(9)2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31052292

RESUMO

Ultraviolet (UV) radiation, especially types A (UVA) and B (UVB), is one of the main causes of skin disorders, including photoaging and skin cancer. Ultraviolent radiation causes oxidative stress, inflammation, p53 induction, DNA damage, mutagenesis, and oxidation of various molecules such as lipids and proteins. In recent decades, the use of polyphenols as molecules with an antioxidant and anti-inflammatory capacity has increased. However, some of these compounds are poorly soluble, and information regarding their absorption and bioavailability is scarce. The main objective of this study was to compare the intestinal absorption and biological activity of apigenin and its more soluble potassium salt (apigenin-K) in terms of antioxidant and photoprotective capacity. Photoprotective effects against UVA and UVB radiation were studied in human keratinocytes, and antioxidant capacity was determined by different methods, including trolox equivalent antioxidant capacity (TEAC), ferric reducing antioxidant power (FRAP) and oxygen radical absorbance capacity (ORAC) assays. Finally, the intestinal absorption of both apigenins was determined using an in vitro Caco-2 cell model. Apigenin showed a slightly higher antioxidant capacity in antioxidant activity assays when compared with apigenin-K. However, no significant differences were obtained for their photoprotective capacities against UVA or UVB. Results indicated that both apigenins protected cell viability in approximately 50% at 5 J/m2 of UVA and 90% at 500 J/m2 of UVB radiation. Regarding intestinal absorption, both apigenins showed similar apparent permeabilities (Papp), 1.81 × 10-5 cm/s and 1.78 × 10-5 cm/s, respectively. Taken together, these results suggest that both apigenins may be interesting candidates for the development of oral (nutraceutical) and topical photoprotective ingredients against UVA and UVB-induced skin damage, but the increased water solubility of apigenin-K makes it the best candidate for further development.


Assuntos
Antioxidantes/farmacologia , Apigenina/farmacologia , Queratinócitos/efeitos dos fármacos , Protetores Solares/farmacologia , Células CACO-2 , Células Cultivadas , Humanos , Absorção Intestinal
15.
Sci Rep ; 9(1): 808, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30692565

RESUMO

Colorectal cancer is the third most common diagnosed cancer globally. Although substantial advances have been obtained both in treatment and survival rates, there is still a need for new therapeutical approaches. Natural compounds are a realistic source of new bioactive compounds with anticancer activity. Among them, rosemary polyphenols have shown a vast antiproliferative capacity against colon cancer cells in vitro and in animal models. We have investigated the antitumor activity of a rosemary extract (RE) obtained by using supercritical fluid extraction through its capacity to inhibit various signatures of cancer progression and metastasis such as proliferation, migration, invasion and clonogenic survival. RE strongly inhibited proliferation, migration and colony formation of colon cancer cells regardless their phenotype. Treatment with RE led to a sharp increase of intracellular ROS that resulted in necrosis cell death. Nrf2 gene silencing increased RE cytotoxic effects, thus suggesting that this pathway was involved in cell survival. These in vitro results were in line with a reduction of tumor growth by oral administration of RE in a xenograft model of colon cancer cells using athymic nude mice. These findings indicate that targeting colon cancer cells by increasing intracellular ROS and decreasing cell survival mechanisms may suppose a therapeutic option in colon cancer through the combination of rosemary compounds and chemotherapeutic drugs.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Neoplasias Colorretais/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Espécies Reativas de Oxigênio/metabolismo , Rosmarinus/química , Administração Oral , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HT29 , Humanos , Masculino , Camundongos , Camundongos Nus , Fator 2 Relacionado a NF-E2/genética , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Mar Drugs ; 16(10)2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30326670

RESUMO

Mammalian target of rapamycin (mTOR) is a PI3K-related serine/threonine protein kinase that functions as a master regulator of cellular growth and metabolism, in response to nutrient and hormonal stimuli. mTOR functions in two distinct complexes-mTORC1 is sensitive to rapamycin, while, mTORC2 is insensitive to this drug. Deregulation of mTOR's enzymatic activity has roles in cancer, obesity, and aging. Rapamycin and its chemical derivatives are the only drugs that inhibit the hyperactivity of mTOR, but numerous side effects have been described due to its therapeutic use. The purpose of this study was to identify new compounds of natural origin that can lead to drugs with fewer side effects. We have used computational techniques (molecular docking and calculated ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) parameters) that have enabled the selection of candidate compounds, derived from marine natural products, SuperNatural II, and ZINC natural products, for inhibitors targeting, both, the ATP and the rapamycin binding sites of mTOR. We have shown experimental evidence of the inhibitory activity of eleven selected compounds against mTOR. We have also discovered the inhibitory activity of a new marine extract against this enzyme. The results have been discussed concerning the necessity to identify new molecules for therapeutic use, especially against aging, and with fewer side effects.


Assuntos
Organismos Aquáticos/química , Produtos Biológicos/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Linhagem Celular Tumoral , Células HCT116 , Humanos , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Sirolimo/farmacologia
17.
Nutrients ; 10(4)2018 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-29587342

RESUMO

The skin is the body's largest organ, it participates in sensitivity and offers protection against microorganisms, chemicals and ultraviolet (UV) radiation. Consequently, the skin may suffer alterations such as photo-ageing, immune dysfunction and inflammation which may significantly affect human health. Nutraceuticals represent a promising strategy for preventing, delaying, or minimising premature ageing of the skin and also to alleviate certain skin disorders. Among them, bioactive peptides and oligosaccharides, plant polyphenols, carotenoids, vitamins and polyunsaturated fatty acids are the most widely used ingredients. Supplementation with these products has shown evidence of having an effect on the signs of ageing and protection against UV radiation ageing in several human trials. In this review, the most relevant human studies on skin nutraceuticals are evaluated and the statistical resolution, biological relevance of their results, and, the trial protocols are discussed. In conclusion, quality and rigorousness of the trials must be improved to build credible scientific evidence for skin nutraceuticals and to establish a cause-effect relationship between the ingredients the beneficial effects for the skin.


Assuntos
Suplementos Nutricionais , Envelhecimento da Pele/efeitos dos fármacos , Higiene da Pele/métodos , Dermatopatias/tratamento farmacológico , Pele/efeitos dos fármacos , Ensaios Clínicos como Assunto , Suplementos Nutricionais/efeitos adversos , Feminino , Humanos , Masculino , Fatores de Risco , Pele/patologia , Pele/efeitos da radiação , Higiene da Pele/efeitos adversos , Dermatopatias/etiologia , Dermatopatias/patologia , Luz Solar/efeitos adversos , Resultado do Tratamento , Raios Ultravioleta/efeitos adversos
18.
Curr Drug Metab ; 19(4): 351-369, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29468962

RESUMO

BACKGROUND: Hibiscus sabdariffa, Lippia citriodora, Rosmarinus officinalis and Olea europaea, are rich in bioactive compounds that represent most of the phenolic compounds' families and have exhibited potential benefits in human health. These plants have been used in folk medicine for their potential therapeutic properties in human chronic diseases. Recent evidence leads to postulate that polyphenols may account for such effects. Nevertheless, the compounds or metabolites that are responsible for reaching the molecular targets are unknown. OBJECTIVE: data based on studies directly using complex extracts on cellular models, without considering metabolic aspects, have limited applicability. In contrast, studies exploring the absorption process, metabolites in the blood circulation and tissues have become essential to identify the intracellular final effectors that are responsible for extracts bioactivity. Once the cellular metabolites are identified using high-resolution mass spectrometry, docking techniques suppose a unique tool for virtually screening a large number of compounds on selected targets in order to elucidate their potential mechanisms. RESULTS: we provide an updated overview of the in vitro and in vivo studies on the toxicity, absorption, permeability, pharmacokinetics and cellular metabolism of bioactive compounds derived from the abovementioned plants to identify the potential compounds that are responsible for the observed health effects. CONCLUSION: we propose the use of targeted metabolomics followed by in silico studies to virtually screen identified metabolites on selected protein targets, in combination with the use of the candidate metabolites in cellular models, as the methods of choice for elucidating the molecular mechanisms of these compounds.


Assuntos
Extratos Vegetais/química , Extratos Vegetais/farmacologia , Plantas/química , Polifenóis/química , Polifenóis/farmacologia , Animais , Humanos , Extratos Vegetais/metabolismo , Polifenóis/metabolismo
19.
Medicines (Basel) ; 6(1)2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30597909

RESUMO

It is estimated that over 60% of the approved drugs and new drug developments for cancer and infectious diseases are from natural origin. The use of natural compounds as a potential source of antitumor agents has been deeply studied in many cancer models, both in vitro and in vivo. Most of the Western medicine studies are based on the use of highly selective pure compounds with strong specificity for their targets such as colchicine or taxol. Nevertheless, approximately 60% of fairly specific drugs in their initial research fail because of toxicity or ineffectiveness in late-stage preclinical studies. Moreover, cancer is a multifaceted disease that in most cases deserves a polypharmacological therapeutic approach. Complex plant-derived mixtures such as natural extracts are difficult to characterize and hardly exhibit high pharmacological potency. However, in some cases, these may provide an advantage due to their multitargeted mode of action and potential synergistic behavior. The polypharmacology approach appears to be a plausible explanation for the multigargeted mechanism of complex natural extracts on different proteins within the same signalling pathway and in several biochemical pathways at once. This review focuses on the different aspects of natural extracts in the context of anticancer activity drug development, with special attention to synergy studies and xenohormesis.

20.
Antioxidants (Basel) ; 6(4)2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29112149

RESUMO

Breast cancer is one of the most common neoplasms worldwide, and in spite of clinical and pharmacological advances, it is still a clinical problem, causing morbidity and mortality. On the one hand, breast cancer shares with other neoplasms some molecular signatures such as an imbalanced redox state, cell cycle alterations, increased proliferation and an inflammatory status. On the other hand, breast cancer shows differential molecular subtypes that determine its prognosis and treatment. These are characterized mainly by hormone receptors especially estrogen receptors (ERs) and epidermal growth factor receptor 2 (HER2). Tumors with none of these receptors are classified as triple negative breast cancer (TNBC) and are associated with a worse prognosis. The success of treatments partially depends on their specificity and the adequate molecular classification of tumors. New advances in anticancer drug discovery using natural compounds have been made in the last few decades, and polyphenols have emerged as promising molecules. They may act on various molecular targets because of their promiscuous behavior, presenting several physiological effects, some of which confer antitumor activity. This review analyzes the accumulated evidence of the antitumor effects of plant polyphenols on breast cancer, with special attention to their activity on ERs and HER2 targets and also covering different aspects such as redox balance, uncontrolled proliferation and chronic inflammation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA