Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38770186

RESUMO

Background: Spinal ventral root injuries generate significant motoneuron degeneration, which hinders full functional recovery. The poor prognosis of functional recovery can be attributed to the use or combination of different therapeutic approaches. Several molecules have been screened as potential treatments in combination with surgical reimplantation of the avulsed roots, the gold standard approach for such injuries. Among the studied molecules, human natural killer-1 (HNK-1) stands out as it is related to the stimulation of motor axon outgrowth. Therefore, we aimed to comparatively investigate the effects of local administration of an HNK-1 mimetic peptide (mp-HNK-1) and systemic treatment with ursolic acid (UA), another HNK-1 mimetic, after ventral root avulsion and reimplantation with heterologous fibrin biopolymer (HFB). Methods: Female mice of the isogenic strain C57BL/6JUnib were divided into five experimental groups: Avulsion, Reimplantation, mp-HNK-1 (in situ), and UA (systemic treatment). Mice were evaluated 2 and 12 weeks after surgery. Functional assessment was performed every four days using the Catwalk platform. Neuronal survival was analyzed by cytochemistry, and glial reactions and synaptic coverage were evaluated by immunofluorescence. Results: Treatment with UA elicited long-term neuroprotection, accompanied by a decrease in microglial reactions, and reactive astrogliosis. The neuroprotective effects of UA were preceded by increased glutamatergic and GABAergic inputs in the ventral spinal cord two weeks after injury. However, a single application of mp-HNK-1 had no significant effects. Functional analysis showed that UA treatment led to an improvement in motor and sensory recovery. Conclusion: Overall, the results indicate that UA is neuroprotective, acting on glial cells and synaptic maintenance, and the combination of these findings led to a better functional recovery.

2.
Bioengineering (Basel) ; 11(1)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38247955

RESUMO

Biomaterials are used extensively in graft procedures to correct bone defects, interacting with the body without causing adverse reactions. The aim of this pre-clinical study was to analyze the effects of photobiomodulation therapy (PBM) with the use of a low-level laser in the repair process of bone defects filled with inorganic matrix (IM) associated with heterologous fibrin biopolymer (FB). A circular osteotomy of 4 mm in the left tibia was performed in 30 Wistar male adult rats who were randomly divided into three groups: G1 = IM + PBM, G2 = IM + FB and G3 = IM + FB + PBM. PBM was applied at the time of the experimental surgery and three times a week, on alternate days, until euthanasia, with 830 nm wavelength, in two points of the operated site. Five animals from each group were euthanized 14 and 42 days after surgery. In the histomorphometric analysis, the percentage of neoformed bone tissue in G3 (28.4% ± 2.3%) was higher in relation to G1 (24.1% ± 2.91%) and G2 (22.2% ± 3.11%) at 14 days and at 42 days, the percentage in G3 (35.1% ± 2.55%) was also higher in relation to G1 (30.1% ± 2.9%) and G2 (31.8% ± 3.12%). In the analysis of the birefringence of collagen fibers, G3 showed a predominance of birefringence between greenish-yellow in the neoformed bone tissue after 42 days, differing from the other groups with a greater presence of red-orange fibers. Immunohistochemically, in all experimental groups, it was possible to observe immunostaining for osteocalcin (OCN) near the bone surface of the margins of the surgical defect and tartrate-resistant acid phosphatase (TRAP) bordering the newly formed bone tissue. Therefore, laser photobiomodulation therapy contributed to improving the bone repair process in tibial defects filled with bovine biomaterial associated with fibrin biopolymer derived from snake venom.

3.
Polymers (Basel) ; 15(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37571065

RESUMO

Spinal cord injury causes critical loss in motor and sensory function. Ventral root avulsion is an experimental model in which there is the tearing of the ventral (motor) roots from the surface of the spinal cord, resulting in several morphological changes, including motoneuron degeneration and local spinal cord circuitry rearrangements. Therefore, our goal was to test the combination of surgical repair of lesioned roots with a fibrin biopolymer and the pharmacological treatment with dimethyl fumarate, an immunomodulatory drug. Thus, adult female Lewis rats were subjected to unilateral ventral root avulsion of L4-L6 roots followed by repair with fibrin biopolymer and daily treatment with dimethyl fumarate (15 mg/Kg; gavage) for 4 weeks, the survival time post-surgery being 12 weeks; n = 5/group/technique. Treatments were evaluated by immunofluorescence and transmission electron microscopy, morphometry of the sciatic nerve, and motor function recovery. Our results indicate that the combination between fibrin biopolymer and dimethyl fumarate is neuroprotective since most of the synapses apposed to alfa motoneurons were preserved in clusters. Also, nerve sprouting occurred, and the restoration of the 'g' ratio and large axon diameter was achieved with the combined treatment. Such parameters were combined with up to 50% of gait recovery, observed by the walking track test. Altogether, our results indicate that combining root restoration with fibrin biopolymer and dimethyl fumarate administration can enhance motoneuron survival and regeneration after proximal lesions.

4.
Muscle Nerve ; 67(6): 522-536, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36905197

RESUMO

INTRODUCTION/AIMS: Peripheral nerve injuries result in impaired neuromuscular interactions, leading to morphological and functional alterations. Adjuvant suture repair methods have been used to improve nerve regeneration and modulate the immune response. Heterologous fibrin biopolymer (HFB), a scaffold with adhesive properties, plays a critical role in tissue repair. The aim of this study is to evaluate neuroregeneration and immune response focusing on neuromuscular recovery, using suture-associated HFB for sciatic nerve repair. METHODS: Forty adult male Wistar rats were distributed into four groups (n = 10): C (control), only sciatic nerve location; D (denervated), neurotmesis and 6-mm gap removal and fixation stumps in subcutaneous tissue; S (suture), neurotmesis followed by suture; and SB (suture + HFB), neurotmesis followed by suture and HFB. Analysis of M2 macrophages (CD206+ ), as well as the morphology and morphometry of nerves, soleus muscle, and neuromuscular junctions (NMJs), were performed at 7 and 30 days after surgery. RESULTS: The SB group had the highest M2 macrophage area in both periods. After 7 days, SB was the only group similar to the C group regarding the number of axons; furthermore, after 30 days, the SB group was closer to the C group concerning blood vessel and central myonuclear numbers, NMJ angle, and connective tissue volume. After 7 days, increases in nerve area, as well as the number and area of blood vessels, were also observed in SB. DISCUSSION: HFB potentiates the immune response, increases axonal regeneration, induces angiogenesis, prevents severe muscle degeneration, and assists in NMJ recovery. In conclusion, suture-associated HFB has major implications for improved peripheral nerve repair.


Assuntos
Adesivo Tecidual de Fibrina , Fibrina , Ratos , Animais , Masculino , Adesivo Tecidual de Fibrina/farmacologia , Ratos Wistar , Nervo Isquiático/lesões , Biopolímeros , Regeneração Nervosa , Suturas
5.
Molecules ; 28(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36615601

RESUMO

Extending the range of use of the heterologous fibrin biopolymer, this pre-clinical study showed a new proportionality of its components directed to the formation of scaffold with a lower density of the resulting mesh to facilitate the infiltration of bone cells, and combined with therapy by laser photobiomodulation, in order to accelerate the repair process and decrease the morphofunctional recovery time. Thus, a transoperative protocol of laser photobiomodulation (L) was evaluated in critical bone defects filled with deproteinized bovine bone particles (P) associated with heterologous fibrin biopolymer (HF). The groups were: BCL (blood clot + laser); HF; HFL; PHF (P+HF); PHFL (P+HF+L). Microtomographically, bone volume (BV) at 14 days, was higher in the PHF and PHFL groups (10.45 ± 3.31 mm3 and 9.94 ± 1.51 mm3), significantly increasing in the BCL, HFL and PHFL groups. Histologically, in all experimental groups, the defects were not reestablished either in the external cortical bone or in the epidural, occurring only in partial bone repair. At 42 days, the bone area (BA) increased in all groups, being significantly higher in the laser-treated groups. The quantification of bone collagen fibers showed that the percentage of collagen fibers in the bone tissue was similar between the groups for each experimental period, but significantly higher at 42 days (35.71 ± 6.89%) compared to 14 days (18.94 ± 6.86%). It can be concluded that the results of the present study denote potential effects of laser radiation capable of inducing functional bone regeneration, through the synergistic combination of biomaterials and the new ratio of heterologous fibrin biopolymer components (1:1:1) was able to make the resulting fibrin mesh less dense and susceptible to cellular permeability. Thus, the best fibrinogen concentration should be evaluated to find the ideal heterologous fibrin scaffold.


Assuntos
Matriz Óssea , Fibrina , Ratos , Animais , Bovinos , Fibrina/uso terapêutico , Ratos Wistar , Regeneração Óssea , Lasers , Bioengenharia , Colágeno , Alicerces Teciduais
6.
Injury ; 54(2): 345-361, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36446670

RESUMO

Peripheral nerve injuries (PNI) lead to alterations in the Agrin-LRP4-MuSK pathway. This results in disaggregation of AChRs and change from epsilon (mature, innervated) to gamma (immature, denervated) subunit. Tubulization technique has been shown to be effective for PNI repair and it also allows the use of adjuvants, such as fibrin biopolymer (FB). This study evaluated the effect of the association of tubulization with FB after PNI on AChRs and associated proteins. Fifty-two adults male Wistar rats were used, distributed in 4 experimental groups: Sham Control (S), Denervated Control (D); Tubulization (TB) and Tubulization + Fibrin Biopolymer (TB+FB). Catwalk was performed every 15 days. Ninety days after surgery the right soleus muscles and ischiatic nerves were submitted to the following analyses: (a) morphological and morphometric analysis of AChRs by confocal microscopy; (b) morphological and morphometric analysis of the ischiatic nerve; (c) protein quantification of AChRs: alpha, gama, and epsilon, of Schwann cells, agrin, LRP4, MuSK, rapsyn, MMP3, MyoD, myogenin, MURF1 and atrogin-1. The main results were about the NMJs that in the TB+FB group presented morphological and morphometric approximation (compactness index; area of the AChRs and motor plate) to the S group. In addition, there were also an increase of S100 and AChRε protein expression and a decrease of MyoD. These positive association resulted in AChRs stabilization that potentiate the neuromuscular regeneration, which strengthens the use of TB for severe injuries repair and the beneficial effect of FB, along with tubulization technique.


Assuntos
Traumatismos dos Nervos Periféricos , Ratos , Animais , Masculino , Agrina/farmacologia , Agrina/metabolismo , Fibrina/metabolismo , Distribuição Normal , Ratos Wistar , Junção Neuromuscular/metabolismo , Receptores Colinérgicos/metabolismo
7.
RECIIS (Online) ; 16(4): 986-989, out.-dez. 2022.
Artigo em Português | LILACS | ID: biblio-1411172

RESUMO

O livro Os animais peçonhentos na saúde pública expõe um vasto histórico de acidentes envolvendo problemas de saúde provocados por animais peçonhentos. Os autores resgatam trabalhos e vivências, descritos por Louis Pasteur e Vital Brazil, fundamentais para o desenvolvimento de processos da ciência translacional como compreendida hoje, no século XXI. A obra é marcada pela defesa da necessidade de políticas públicas coerentes que sejam capazes de promover ações de capacitação, prevenção, diagnóstico, tratamento e reabilitação dos pacientes.


The book Os animais peçonhentos na saúde pública presents a vast history of accidents involving health problems caused by venomous animals. The authors rescue works and experiences, described by Louis Pasteur and Vital Brazil, fundamental for the development of translational science processes as understood today, in the 21st century. The work is marked by the defense of the need for coherent public policies capable of promoting training, prevention, diagnosis, treatment and rehabilitation of patients.


El libro Os animais peçonhentos na saúde pública expone una vasta historia de accidentes que involucran problemas de salud causados por animals venenosos. Los autores rescatan obras y experiencias, descritas por Louis Pasteur y Vital Brazil, fundamentales para el desarrollo de los procesos de ciencia translacional tal como se entienden hoy, en el siglo XXI. El libro está marcado por la defensa de la necesidad de políticas públicas coherentes capaces de promover la formación, la prevención, el diagnóstico, el tratamiento y la rehabilitación de los pacientes.


Assuntos
Humanos , Animais Peçonhentos , Pacientes , Venenos , Mordeduras e Picadas , Saúde Pública , Imunização Passiva , Assistência Centrada no Paciente , Ciência Translacional Biomédica
8.
Artigo em Inglês | MEDLINE | ID: mdl-35261617

RESUMO

Background: The association of scaffolds to repair extensive bone defects can contribute to their evolution and morphophysiological recomposition. The incorporation of particulate biomaterials into three-dimensional fibrin bioproducts together with photobiomodulation therapy (PBM) has potential and can improve regenerative medicine procedures. The objective of this experiment was to evaluate the effects of PBM therapy on critical size defects filled with xenogenic bone substitute associated with fibrin biopolymer. Methods: A critical defect of 8 mm was performed in 36 Wistar male adult rats that were divided into four groups. Groups BC and BC-PBM were defined as controls with defects filled by a clot (without or with PBM, respectively) and groups XS and XS-PBM that comprised those filled with biocomplex Bio-OssTM in association with fibrin biopolymer. PBM was applied immediately after the surgery and three times a week every other day, with the parameters: wavelength of 830 nm, energy density 6.2 J/cm2, output power 30 mW, beam area of 0.116 cm2, irradiance 0.258,62 W/cm2, energy/point 0.72 J, total energy 2.88 J. Fourteen and 42 days after the surgery, animals were euthanatized and subjected to microtomography, qualitative and quantitative histological analysis. Results: The BC-PBM and XS-PBM groups had a similar evolution in the tissue repair process, with a higher density of the volume of new formed bone in relation to the groups without PBM (p = 0.04086; p = 0.07093, respectively). Intense vascular proliferation and bone deposition around the biomaterial particles were observed in the animals of the groups in which biocomplex was applied (XS and XS-PBM). Conclusion: PBM therapy allowed an improvement in the formation of new bone, with a more organized deposition of collagen fibers in the defect area. Biocomplex favored the insertion and permanence of the particulate material in bone defects, creating a favorable microenvironment for accelerate repair process.

9.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1484791

RESUMO

Abstract Background: The association of scaffolds to repair extensive bone defects can contribute to their evolution and morphophysiological recomposition. The incorporation of particulate biomaterials into three-dimensional fibrin bioproducts together with photobiomodulation therapy (PBM) has potential and can improve regenerative medicine procedures. The objective of this experiment was to evaluate the effects of PBM therapy on critical size defects filled with xenogenic bone substitute associated with fibrin biopolymer. Methods: A critical defect of 8 mm was performed in 36 Wistar male adult rats that were divided into four groups. Groups BC and BC-PBM were defined as controls with defects filled by a clot (without or with PBM, respectively) and groups XS and XS-PBM that comprised those filled with biocomplex Bio-OssTM in association with fibrin biopolymer. PBM was applied immediately after the surgery and three times a week every other day, with the parameters: wavelength of 830 nm, energy density 6.2 J/cm2, output power 30 mW, beam area of 0.116 cm2, irradiance 0.258,62 W/cm2, energy/point 0.72 J, total energy 2.88 J. Fourteen and 42 days after the surgery, animals were euthanatized and subjected to microtomography, qualitative and quantitative histological analysis. Results: The BC-PBM and XS-PBM groups had a similar evolution in the tissue repair process, with a higher density of the volume of new formed bone in relation to the groups without PBM (p = 0.04086; p = 0.07093, respectively). Intense vascular proliferation and bone deposition around the biomaterial particles were observed in the animals of the groups in which biocomplex was applied (XS and XS-PBM). Conclusion: PBM therapy allowed an improvement in the formation of new bone, with a more organized deposition of collagen fibers in the defect area. Biocomplex favored the insertion and permanence of the particulate material in bone defects, creating a favorable microenvironment for accelerate repair process.

10.
J. venom. anim. toxins incl. trop. dis ; 28: e20210056, 2022. tab, graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1360567

RESUMO

The association of scaffolds to repair extensive bone defects can contribute to their evolution and morphophysiological recomposition. The incorporation of particulate biomaterials into three-dimensional fibrin bioproducts together with photobiomodulation therapy (PBM) has potential and can improve regenerative medicine procedures. The objective of this experiment was to evaluate the effects of PBM therapy on critical size defects filled with xenogenic bone substitute associated with fibrin biopolymer. Methods: A critical defect of 8 mm was performed in 36 Wistar male adult rats that were divided into four groups. Groups BC and BC-PBM were defined as controls with defects filled by a clot (without or with PBM, respectively) and groups XS and XS-PBM that comprised those filled with biocomplex Bio-OssTM in association with fibrin biopolymer. PBM was applied immediately after the surgery and three times a week every other day, with the parameters: wavelength of 830 nm, energy density 6.2 J/cm2, output power 30 mW, beam area of 0.116 cm2, irradiance 0.258,62 W/cm2, energy/point 0.72 J, total energy 2.88 J. Fourteen and 42 days after the surgery, animals were euthanatized and subjected to microtomography, qualitative and quantitative histological analysis. Results: The BC-PBM and XS-PBM groups had a similar evolution in the tissue repair process, with a higher density of the volume of new formed bone in relation to the groups without PBM (p = 0.04086; p = 0.07093, respectively). Intense vascular proliferation and bone deposition around the biomaterial particles were observed in the animals of the groups in which biocomplex was applied (XS and XS-PBM). Conclusion: PBM therapy allowed an improvement in the formation of new bone, with a more organized deposition of collagen fibers in the defect area. Biocomplex favored the insertion and permanence of the particulate material in bone defects, creating a favorable microenvironment for accelerate repair process.(AU)


Assuntos
Materiais Biocompatíveis , Biopolímeros , Colágeno , Terapia com Luz de Baixa Intensidade
11.
J. venom. anim. toxins incl. trop. dis ; 28: e20220017, 2022. graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1386130

RESUMO

The innovation timeline is expensive, risky, competitive, time-consuming, and labor-intensive. In order to overcome such challenges and optimize financial resources, pharmaceutical companies nowadays hire contract development and manufacturing organizations (CDMO) to help them. Based on the experience acquired first from the development of two biopharmaceuticals, the Heterologous Fibrin Sealant and the Apilic Antivenom, and more recently, during their respective clinical trials; the Center for the Study of Venoms and Venomous Animals (CEVAP) proposed to the Ministry of Health the creation of the first Brazilian CDMO. This groundbreaking venture will assist in converting a candidate molecule - from its discovery, proof of concept, product development, up to pilot batch production - into a product. The CDMO impact and legacy will be immense, offering service provision to the public and private sector by producing validated samples for clinical trials and academic training on translational research for those seeking a position in pharmaceutical industries and manufacturing platforms.(AU)


Assuntos
Produtos Biológicos/análise , Proposta de Concorrência/organização & administração , Protocolo de Ensaio Clínico , Brasil , Boas Práticas de Fabricação
12.
Acta Cir Bras ; 36(4): e360407, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34037082

RESUMO

PURPOSE: The aim of this work was to analyze the effect of fibrin biopolymer sealant (FS) associated or not to aquatic exercise (AE) on the calcaneal tendon repair. METHODS: Forty-four female Wistar rats were randomly divided into four experimental groups: Lesion control (L), Lesion and FS (LS), Lesion and AE (LE) and Lesion and FS associated to AE (LSE). The edema volume (EV), collagen ratio, and histopathological analysis were evaluated after 7, 14, and 21 days of partial tendon transection. RESULTS: The EV was statistically reduced for all treatment groups after 7 and 21 days when compared to L group. The LS and LSE had the highest EV reduction after 21 days of treatment. The FS group didn't induce tissue necrosis or infections on the histopathological analysis. It was observed tenocytes proliferation, granulation tissue and collagen formation in the tendon partial transection area in the FS group. The LSE demonstrated higher amount of granulation tissue and increased the collagen deposition at the injury site. CONCLUSIONS: Our data suggests that the therapeutic potential of the association of heterologous fibrin biopolymer sealant with aquatic exercise program should be further explored as it may stimulate the regeneration phase and optimize calcaneal tendon recovery.


Assuntos
Tendão do Calcâneo , Procedimentos de Cirurgia Plástica , Tendão do Calcâneo/cirurgia , Animais , Colágeno , Feminino , Adesivo Tecidual de Fibrina , Ratos , Ratos Wistar
13.
Stem Cell Res Ther ; 12(1): 303, 2021 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-34051869

RESUMO

BACKGROUND: Nerve injuries are debilitating, leading to long-term motor deficits. Remyelination and axonal growth are supported and enhanced by growth factor and cytokines. Combination of nerve guidance conduits (NGCs) with adipose-tissue-derived multipotent mesenchymal stromal cells (AdMSCs) has been performing promising strategy for nerve regeneration. METHODS: 3D-printed polycaprolactone (PCL)-NGCs were fabricated. Wistar rats subjected to critical sciatic nerve damage (12-mm gap) were divided into sham, autograft, PCL (empty NGC), and PCL + MSCs (NGC multi-functionalized with 106 canine AdMSCs embedded in heterologous fibrin biopolymer) groups. In vitro, the cells were characterized and directly stimulated with interferon-gamma to evaluate their neuroregeneration potential. In vivo, the sciatic and tibial functional indices were evaluated for 12 weeks. Gait analysis and nerve conduction velocity were analyzed after 8 and 12 weeks. Morphometric analysis was performed after 8 and 12 weeks following lesion development. Real-time PCR was performed to evaluate the neurotrophic factors BDNF, GDNF, and HGF, and the cytokine and IL-10. Immunohistochemical analysis for the p75NTR neurotrophic receptor, S100, and neurofilament was performed with the sciatic nerve. RESULTS: The inflammatory environment in vitro have increased the expression of neurotrophins BDNF, GDNF, HGF, and IL-10 in canine AdMSCs. Nerve guidance conduits multi-functionalized with canine AdMSCs embedded in HFB improved functional motor and electrophysiological recovery compared with PCL group after 12 weeks. However, the results were not significantly different than those obtained using autografts. These findings were associated with a shift in the regeneration process towards the formation of myelinated fibers. Increased immunostaining of BDNF, GDNF, and growth factor receptor p75NTR was associated with the upregulation of BDNF, GDNF, and HGF in the spinal cord of the PCL + MSCs group. A trend demonstrating higher reactivity of Schwann cells and axonal branching in the sciatic nerve was observed, and canine AdMSCs were engrafted at 30 days following repair. CONCLUSIONS: 3D-printed NGCs multi-functionalized with canine AdMSCs embedded in heterologous fibrin biopolymer as cell scaffold exerted neuroregenerative effects. Our multimodal approach supports the trophic microenvironment, resulting in a pro-regenerative state after critical sciatic nerve injury in rats.


Assuntos
Células-Tronco Mesenquimais , Animais , Cães , Regeneração Nervosa , Impressão Tridimensional , Ratos , Ratos Wistar , Células de Schwann , Nervo Isquiático
14.
Injury ; 52(4): 731-737, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33902866

RESUMO

Denervation leads to severe atrophy of neuromuscular junction (NMJ) structure including decrease of the expression of fundamental proteins. Up to now, conventional suture has been the gold standard method used to correct this injury. Fibrin sealant is one of the alternatives proposed to optimize this method. This study verified if the association of fibrin sealant - Heterologous Fibrin Biopolymer (HFB) and a single suture stitch promotes return of morphology and NMJ structure to mature pattern after peripheral nerve injury. Forty Wistar rats were distributed into 4 groups: Sham-Control (SC), Denervated-Control (DC), Suture-Lesion (SL) and Suture-Lesion + HFB (SFS). In SC group only the right sciatic nerve identification was done. In DC, SL and SFS groups fixation of nerve stumps on musculature immediately after neurotmesis was performed. After seven days, stump reconnection with 3 stitches in SL and a single stitch associated with HFB in SFS were done. After sixty days right soleus muscles were prepared for nicotinic acetylcholine receptors (nAChRs) and nerve terminal confocal analyses, and for nAChRs (α1, ε e γ), S100, Agrin, LRP-4, MMP-3, Rapsyn western blotting analyses. SC group presented normal morphology. In DC group it was observed flattening of NMJ, fragmentation of nAChRs and tangled nerve terminals. The majority of the parameters of SL and SFS groups presented values in between SC and DC groups. There was an increase of relative planar area in these groups (SL and SFS) highlighting that there was less nAChRs fragmentation and the values of protein expression showed return of nAChRs to mature pattern. Use of HFB associated with a single suture stitch decreased surgical time, minimized suture injuries, did not alter nerve regeneration and presented potential to reestablish the NMJ apparatus. These consolidated results encourage surgeons to develop future clinical trials to install definitively this new approach both for reconstructive surgery and neurosurgery.


Assuntos
Traumatismos dos Nervos Periféricos , Animais , Biopolímeros , Fibrina , Regeneração Nervosa , Junção Neuromuscular , Ratos , Ratos Wistar , Suturas
15.
Acta cir. bras ; 36(4): e360407, 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1248542

RESUMO

ABSTRACT Purpose The aim of this work was to analyze the effect of fibrin biopolymer sealant (FS) associated or not to aquatic exercise (AE) on the calcaneal tendon repair. Methods Forty-four female Wistar rats were randomly divided into four experimental groups: Lesion control (L), Lesion and FS (LS), Lesion and AE (LE) and Lesion and FS associated to AE (LSE). The edema volume (EV), collagen ratio, and histopathological analysis were evaluated after 7, 14, and 21 days of partial tendon transection. Results The EV was statistically reduced for all treatment groups after 7 and 21 days when compared to L group. The LS and LSE had the highest EV reduction after 21 days of treatment. The FS group didn't induce tissue necrosis or infections on the histopathological analysis. It was observed tenocytes proliferation, granulation tissue and collagen formation in the tendon partial transection area in the FS group. The LSE demonstrated higher amount of granulation tissue and increased the collagen deposition at the injury site. Conclusions Our data suggests that the therapeutic potential of the association of heterologous fibrin biopolymer sealant with aquatic exercise program should be further explored as it may stimulate the regeneration phase and optimize calcaneal tendon recovery.


Assuntos
Animais , Feminino , Ratos , Tendão do Calcâneo/cirurgia , Procedimentos de Cirurgia Plástica , Adesivo Tecidual de Fibrina , Colágeno , Ratos Wistar
16.
J Venom Anim Toxins Incl Trop Dis ; 26: e20190093, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32518556

RESUMO

BACKGROUND: Ventral root avulsion (VRA) is an experimental approach in which there is an abrupt separation of the motor roots from the surface of the spinal cord. As a result, most of the axotomized motoneurons degenerate by the second week after injury, and the significant loss of synapses and increased glial reaction triggers a chronic inflammatory state. Pharmacological treatment associated with root reimplantation is thought to overcome the degenerative effects of VRA. Therefore, treatment with dimethyl fumarate (DMF), a drug with neuroprotective and immunomodulatory effects, in combination with a heterologous fibrin sealant/biopolymer (FS), a biological glue, may improve the regenerative response. METHODS: Adult female Lewis rats were subjected to VRA of L4-L6 roots followed by reimplantation and daily treatment with DMF for four weeks. Survival times were evaluated 1, 4 or 12 weeks after surgery. Neuronal survival assessed by Nissl staining, glial reactivity (anti-GFAP for astrocytes and anti-Iba-1 for microglia) and synapse preservation (anti-VGLUT1 for glutamatergic inputs and anti-GAD65 for GABAergic inputs) evaluated by immunofluorescence, gene expression (pro- and anti-inflammatory molecules) and motor function recovery were measured. RESULTS: Treatment with DMF at a dose of 15 mg/kg was found to be neuroprotective and immunomodulatory because it preserved motoneurons and synapses and decreased astrogliosis and microglial reactions, as well as downregulated the expression of pro-inflammatory gene transcripts. CONCLUSION: The pharmacological benefit was further enhanced when associated with root reimplantation with FS, in which animals recovered at least 50% of motor function, showing the efficacy of employing multiple regenerative approaches following spinal cord root injury.

17.
J Mech Behav Biomed Mater ; 104: 103662, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32174420

RESUMO

Fibrin sealant (FS) is a biomaterial that exhibits hemostatic and repairing properties. It has been successfully used as scaffolds and adhesives to improve repair and regeneration of tissues. The objective of this study was to evaluate the effect of FS in the regeneration process of bone defects in male rat tibias through macroscopic, microscopic and mechanical analysis. A bone defect of 2.9 mm was performed on the medial face of the proximal third of the tibia of 40 rats and implanted FS and autologous bone graft (AG). The animals were divided into four groups: animals with bone defect without any treatment (CON), animals treated with fibrin sealant (TFS), animals treated with autologous graft (TAG) and animals treated with fibrin sealant and autologous graft (FSAG). The animals were euthanized 42 days after surgery. Macroscopic analysis showed no difference between the groups (p > 0.05) in relation to tibial weight, but a statistically significant difference (p = 0.005) was observed for their length. Micro-computed tomography (micro-CT) revealed tendentious values regarding bone microarchitecture and FS. Bone mineral densitometry (BMD) showed significance between the FSAG (p = 0.009) and TFS (p = 0.007) groups. The bone mineral content (BMC) presented a significant difference between all groups (p = 0.020). Maximum strength showed a significant difference between the FSAG group (p = 0.007) and the others. The results obtained in relation to the relative stiffness also present a significant difference (p = 0.023). Newly formed bone showed significant differences between groups (p = 0.035). We conclude that bone defect regeneration was directly influenced by the use of FS and AG.


Assuntos
Adesivo Tecidual de Fibrina , Tíbia , Animais , Regeneração Óssea , Transplante Ósseo , Adesivo Tecidual de Fibrina/farmacologia , Masculino , Ratos , Tíbia/diagnóstico por imagem , Microtomografia por Raio-X
18.
J. venom. anim. toxins incl. trop. dis ; 26: e20190101, 2020. tab, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1135131

RESUMO

Venous ulcers are the main causes of chronic lower-limb ulcers. The healing difficulties encourage the research and development of new products in order to achieve better therapeutic results. Fibrin sealant is one of these alternatives. Besides being a validated scaffold and drug delivery system, it possesses excellent healing properties. This review covered the last 25 years of the literature and showed that the fibrin sealant is used in various clinical situations to promote the healing of different types of ulcers, especially chronic ones. These are mostly venous in origin and usually does not respond to conventional treatment. Commercially, only the homologous fibrin sealants obtained from human blood are available, which are highly efficient but very expensive. The heterologous fibrin sealant is a non-commercial experimental low-cost product and easily produced due to the abundance of raw material. The phase I/II clinical trial is already completed and showed that the product is safe and promisingly efficacious for the treatment of chronic venous ulcers. In addition, clinical proteomic strategies to assess disease prognosis have been increasingly used. By analyzing liquid samples from the wounds through proteomic strategies, it is possible to predict before treatment which ulcers will evolve favorably and which ones will be difficult to heal. This prognosis is only possible by evaluating the expression of isolated proteins in exudates and analysis using label-free strategies for shotgun. Multicentric clinical trials will be required to evaluate the efficacy of fibrin sealant to treat chronic ulcers, as well as to validate the proteomic strategies to assess prognosis.(AU)


Assuntos
Animais , Úlcera , Úlcera Varicosa/diagnóstico , Fibrina , Proteômica , Biopolímeros/análise
19.
J. venom. anim. toxins incl. trop. dis ; 26: e20190093, 2020. ilus, tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1135141

RESUMO

Ventral root avulsion (VRA) is an experimental approach in which there is an abrupt separation of the motor roots from the surface of the spinal cord. As a result, most of the axotomized motoneurons degenerate by the second week after injury, and the significant loss of synapses and increased glial reaction triggers a chronic inflammatory state. Pharmacological treatment associated with root reimplantation is thought to overcome the degenerative effects of VRA. Therefore, treatment with dimethyl fumarate (DMF), a drug with neuroprotective and immunomodulatory effects, in combination with a heterologous fibrin sealant/biopolymer (FS), a biological glue, may improve the regenerative response. Methods: Adult female Lewis rats were subjected to VRA of L4-L6 roots followed by reimplantation and daily treatment with DMF for four weeks. Survival times were evaluated 1, 4 or 12 weeks after surgery. Neuronal survival assessed by Nissl staining, glial reactivity (anti-GFAP for astrocytes and anti-Iba-1 for microglia) and synapse preservation (anti-VGLUT1 for glutamatergic inputs and anti-GAD65 for GABAergic inputs) evaluated by immunofluorescence, gene expression (pro- and anti-inflammatory molecules) and motor function recovery were measured. Results: Treatment with DMF at a dose of 15 mg/kg was found to be neuroprotective and immunomodulatory because it preserved motoneurons and synapses and decreased astrogliosis and microglial reactions, as well as downregulated the expression of pro-inflammatory gene transcripts. Conclusion: The pharmacological benefit was further enhanced when associated with root reimplantation with FS, in which animals recovered at least 50% of motor function, showing the efficacy of employing multiple regenerative approaches following spinal cord root injury.(AU)


Assuntos
Animais , Produtos Biológicos , Biopolímeros , Fibrina , Imunomodulação , Fumarato de Dimetilo , Neuroproteção , Expressão Gênica
20.
Injury ; 50(4): 834-847, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30922661

RESUMO

The use of suture associated with heterologous fibrin sealant has been highlighted for reconstruction after peripheral nerve injury, having the advantage of being safe for clinical use. In this study we compared the use of this sealant associated with reduced number of stitches with conventional suture after ischiatic nerve injury. 36 Wistar rats were divided into 4 groups: Control (C), Denervated (D), ischiatic nerve neurotmesis (6 mm gap); Suture (S), epineural anastomosis after 7 days from neurotmesis, Suture + Fibrin Sealant (SFS), anastomosis with only one suture point associated with Fibrin Sealant. Catwalk, electromyography, ischiatic and tibial nerve, soleus muscle morphological and morphometric analyses were performed. The amplitude and latency values of the Suture and Suture + Fibrin Sealant groups were similar and indicative of nerve regeneration.The ischiatic nerve morphometric analysis in the Suture + Fibrin Sealant showed superior values related to axons and nerve fibers area and diameter when compared to Suture group. In the Suture and Suture + Fibrin Sealant groups, there was an increase in muscle weight and in fast fibers frequency, it was a decrease in the percentage of collagen compared to group Denervated and in the neuromuscular junctions, the synaptic boutons were reestablished.The results suggest a protective effect at the lesion site caused by the fibrin sealant use. The stitches reduction minimizes the trauma caused by the needle and it accelerates the surgical practice. So the heterologous fibrin sealant use in nerve reconstruction should be considered.


Assuntos
Adesivo Tecidual de Fibrina/farmacologia , Regeneração Nervosa/efeitos dos fármacos , Traumatismos dos Nervos Periféricos/fisiopatologia , Nervos Periféricos/efeitos dos fármacos , Células Receptoras Sensoriais/efeitos dos fármacos , Animais , Axônios , Axotomia , Masculino , Modelos Animais , Regeneração Nervosa/fisiologia , Ratos , Ratos Wistar , Procedimentos de Cirurgia Plástica , Suturas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA