Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(15): 18643-18657, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38564504

RESUMO

Musculoskeletal diseases involving tissue injury comprise tendon, ligament, and muscle injury. Recently, macrophages have been identified as key players in the tendon repair process, but no therapeutic strategy involving dual drug delivery and gene delivery to macrophages has been developed for targeting the two main dysregulated aspects of macrophages in tendinopathy, i.e., inflammation and fibrosis. Herein, the anti-inflammatory and antifibrotic effects of dual-loaded budesonide and serpine1 siRNA lipid-polymer hybrid nanoparticles (LPNs) are evaluated in murine and human macrophage cells. The modulation of the gene and protein expression of factors associated with inflammation and fibrosis in tendinopathy is demonstrated by real time polymerase chain reaction and Western blot. Macrophage polarization to the M2 phenotype and a decrease in the production of pro-inflammatory cytokines are confirmed in macrophage cell lines and primary cells. The increase in the activity of a matrix metalloproteinase involved in tissue remodelling is proven, and studies evaluating the interactions of LPNs with T cells proved that dual-loaded LPNs act specifically on macrophages and do not induce any collateral effects on T cells. Overall, these dual-loaded LPNs are a promising combinatorial therapeutic strategy with immunomodulatory and antifibrotic effects in dysregulated macrophages in the context of tendinopathy.


Assuntos
Nanopartículas , Tendinopatia , Animais , Humanos , Camundongos , Polímeros , RNA Interferente Pequeno/genética , Budesonida , Macrófagos , Inflamação , Lipídeos , Fibrose
2.
Arthritis Res Ther ; 26(1): 66, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468277

RESUMO

BACKGROUND: CRISPR-Cas9-based genome engineering represents a powerful therapeutic tool for cartilage tissue engineering and for understanding molecular pathways driving cartilage diseases. However, primary chondrocytes are difficult to transfect and rapidly dedifferentiate during monolayer (2D) cell culture, making the lengthy expansion of a single-cell-derived edited clonal population not feasible. For this reason, functional genetics studies focused on cartilage and rheumatic diseases have long been carried out in cellular models that poorly recapitulate the native molecular properties of human cartilaginous tissue (e.g., cell lines, induced pluripotent stem cells). Here, we set out to develop a non-viral CRISPR-Cas9, bulk-gene editing method suitable for chondrocyte populations from different cartilaginous sources. METHODS: We screened electroporation and lipid nanoparticles for ribonucleoprotein (RNP) delivery in primary polydactyly chondrocytes, and optimized RNP reagents assembly. We knocked out RELA (also known as p65), a subunit of the nuclear factor kappa B (NF-κB), in polydactyly chondrocytes and further characterized knockout (KO) cells with RT-qPCR and Western Blot. We tested RELA KO in chondrocytes from diverse cartilaginous sources and characterized their phenotype with RT-qPCR. We examined the chondrogenic potential of wild-type (WT) and KO cell pellets in presence and absence of interleukin-1ß (IL-1ß). RESULTS: We established electroporation as the optimal transfection technique for chondrocytes enhancing transfection and editing efficiency, while preserving high cell viability. We knocked out RELA with an unprecedented efficiency of ~90%, confirming lower inflammatory pathways activation upon IL-1ß stimulation compared to unedited cells. Our protocol could be easily transferred to primary human chondrocytes harvested from osteoarthritis (OA) patients, human FE002 chondroprogenitor cells, bovine chondrocytes, and a human chondrocyte cell line, achieving comparable mean RELA KO editing levels using the same protocol. All KO pellets from primary human chondrocytes retained chondrogenic ability equivalent to WT cells, and additionally displayed enhanced matrix retention under inflamed conditions. CONCLUSIONS: We showcased the applicability of our bulk gene editing method to develop effective autologous and allogeneic off-the-shelf gene therapies strategies and to enable functional genetics studies in human chondrocytes to unravel molecular mechanisms of cartilage diseases.


Assuntos
Doenças das Cartilagens , Polidactilia , Humanos , Animais , Bovinos , Condrócitos/metabolismo , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Interleucina-1beta/metabolismo , Doenças das Cartilagens/metabolismo , Polidactilia/metabolismo
3.
Sci Rep ; 11(1): 8234, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33859220

RESUMO

Despite the ubiquitous use over the past 150 years, the functions of the current medical needle are facilitated only by mechanical shear and cutting by the needle tip, i.e. the lancet. In this study, we demonstrate how nonlinear ultrasonics (NLU) extends the functionality of the medical needle far beyond its present capability. The NLU actions were found to be localized to the proximity of the needle tip, the SonoLancet, but the effects extend to several millimeters from the physical needle boundary. The observed nonlinear phenomena, transient cavitation, fluid streams, translation of micro- and nanoparticles and atomization, were quantitatively characterized. In the fine-needle biopsy application, the SonoLancet contributed to obtaining tissue cores with an increase in tissue yield by 3-6× in different tissue types compared to conventional needle biopsy technique using the same 21G needle. In conclusion, the SonoLancet could be of interest to several other medical applications, including drug or gene delivery, cell modulation, and minimally invasive surgical procedures.


Assuntos
Agulhas , Ultrassonografia de Intervenção , Animais , Biópsia por Agulha Fina/instrumentação , Biópsia por Agulha Fina/métodos , Bovinos , Sistemas de Liberação de Medicamentos/instrumentação , Sistemas de Liberação de Medicamentos/métodos , Técnicas de Transferência de Genes/instrumentação , Humanos , Procedimentos Cirúrgicos Minimamente Invasivos/instrumentação , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Imagens de Fantasmas , Cirurgia Assistida por Computador/instrumentação , Cirurgia Assistida por Computador/métodos , Ultrassom/instrumentação , Ultrassom/métodos , Ultrassonografia de Intervenção/instrumentação , Ultrassonografia de Intervenção/métodos
4.
Front Microbiol ; 11: 575455, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33281770

RESUMO

Odoribacter splanchnicus, belonging to the order Bacteroidales, is a common, short-chain fatty acid producing member of the human intestinal microbiota. A decreased abundance of Odoribacter has been linked to different microbiota-associated diseases, such as non-alcoholic fatty liver disease, cystic fibrosis and inflammatory bowel disease (IBD). The type strain of O. splanchnicus has been genome-sequenced, but otherwise very little is known about this anaerobic bacterium. The species surfaces in many microbiota studies and, consequently, comprehension on its interactions with the host is needed. In this study, we isolated a novel strain of O. splanchnicus from a healthy fecal donor, identified it by genome sequencing and addressed its adhesive, epithelium reinforcing and immunoregulatory properties. Our results show that O. splanchnicus strain 57 is non-adherent to enterocytes or mucus, does not reinforce nor compromise Caco-2 monolayer integrity and most likely harbors penta-acylated, less endotoxic lipid A as part of its lipopolysaccharide (LPS) structure based on the lack of gene lpxM and in vitro results on low-level NF-κB activity. The studies by transmission electron microscopy revealed that O. splanchnicus produces outer membrane vesicles (OMV). O. splanchnicus cells, culture supernatant i.e., spent medium or OMVs did not induce interleukin-8 (IL-8) response in HT-29 enterocyte cells suggesting a very low proinflammatory capacity. On the contrary, the treatment of HT-29 cells with O. splanchnicus cells, spent medium or OMVs prior to exposure to Escherichia coli LPS elicited a significant decrease in IL-8 production as compared to E. coli LPS treatment alone. Moreover, O. splanchnicus spent supernatant induced IL-10 production by immune cells, suggesting anti-inflammatory activity. Our in vitro findings indicate that O. splanchnicus and its effector molecules transported in OMVs could potentially exert anti-inflammatory action in the gut epithelium. Taken together, O. splanchnicus seems to be a commensal with a primarily beneficial interaction with the host.

5.
J Control Release ; 295: 118-129, 2019 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-30572035

RESUMO

Intra-articular administration of glucocorticoids such as dexamethasone is a common treatment for osteoarthritic inflammation and pain. Despite its potent anti-inflammatory properties, multiple barriers hinder the drug's effectiveness in the articular space. In particular, the high turnover rate of the synovial fluid and the dense cartilage extracellular matrix (ECM) lead to poor drug penetration into cartilage. In order to increase the infiltration and retention time, two dexamethasone prodrugs were developed. Firstly, dexamethasone was conjugated to polycationic chitosan, which led to deep and sustained infiltration of the drug into full thickness cartilage, due to its strong electrostatic interactions with the high negative fixed charges of the cartilage ECM. Secondly, dexamethasone was conjugated to a collagen type II-binding peptide, WYRGRL, and this prodrug was shown to be retained in the deep zones of cartilage through specific interactions with cartilage-specific collagen type II bundles. In both cases, active dexamethasone was released from the carrier by ester linkage hydrolysis. Complexing dexamethasone with either chitosan or collagen type II-affinity carriers increased its binding and therapeutic efficacy inside cartilage, compared to the free drug. Both dexamethasone conjugates significantly reduced levels of inflammatory markers and slowed the loss of glycosaminoglycans in an ex vivo model. A single dose of a cartilage-targeting dexamethasone prodrug represents a promising alternative to the repetitive glucocorticoid injections needed to compensate for its rapid clearance from the joint cavity.


Assuntos
Cartilagem Articular/metabolismo , Dexametasona/administração & dosagem , Sistemas de Liberação de Medicamentos , Glucocorticoides/administração & dosagem , Pró-Fármacos/administração & dosagem , Adulto , Animais , Bovinos , Células Cultivadas , Quitosana/metabolismo , Condrócitos/metabolismo , Colágeno Tipo II/metabolismo , Dexametasona/farmacocinética , Dexametasona/farmacologia , Portadores de Fármacos/metabolismo , Feminino , Glucocorticoides/farmacocinética , Glucocorticoides/farmacologia , Humanos , Masculino , Peptídeos/metabolismo , Pró-Fármacos/farmacocinética , Pró-Fármacos/farmacologia , Adulto Jovem
6.
Acta Biomater ; 77: 182-190, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30006315

RESUMO

The bacterial ligase Sortase A (SA) and its mutated variants have become increasingly popular over the last years for post-translational protein modifications due to their unparalleled specificity and efficiency. The aim of this work was to study SA as a cross-linking enzyme for hydrogel-based tissue engineering. For this, we optimized SA pentamutant production and purification from E. coli to achieve high yields and purity. Then using hyaluronan (HA) as a model biopolymer and modifying it with SA-substrate peptides, we studied the cross-linking kinetics obtained with SA, the enzyme stability, cytocompatibility, and immunogenicity, and compared those to state-of-the-art standards. The transglutaminase activated factor XIII (FXIIIa) was used as the reference cross-linking enzyme, and the clinical collagen scaffold Chondro-Gide (CG) was used as a reference biocompatible material for in vivo studies. We found SA could be produced in large amounts in the lab without special equipment, whereas the only viable source of FXIIIa is currently a prescription medicine purified from donated blood. SA was also remarkably more stable in solution than FXIIIa, and it could provide even much faster gelation, making it possible to achieve nearly-instantaneous gel formation upon delivery with a double-barrel syringe. This is an interesting improvement for in vivo work, to allow in situ gel formation in a wet environment, and could also be useful for applications like bioprinting where very fast gelation is needed. The cytocompatibility and lack of immunogenicity were still uncompromised. These results support the use of SA as a versatile enzymatic cross-linking strategy for 3D culture and tissue engineering applications. STATEMENT OF SIGNIFICANCE: Enzymatic crosslinking has immense appeal for tissue engineers as one of the most biocompatible methods of hydrogel crosslinking. Sortase A has a number of unique advantages over previous systems. We show an impressive and tunable range of crosslinking kinetics, from almost instantaneous gelation to several minutes. We also demonstrate that Sortase A crosslinked hydrogels have good cytocompatibility and cause no immune reaction when implanted in vivo. With its additional benefits of excellent stability in solution and easy large-scale synthesis available to any lab, we believe this novel crosslinking modality will find multiple applications in high throughput screening, tissue engineering, and biofabrication.


Assuntos
Aminoaciltransferases/química , Proteínas de Bactérias/química , Reagentes de Ligações Cruzadas/química , Cisteína Endopeptidases/química , Engenharia Tecidual/métodos , Materiais Biocompatíveis/química , Biopolímeros/química , Linhagem Celular , Condrócitos/citologia , Endotoxinas/química , Escherichia coli/metabolismo , Fator XIII/química , Fibroblastos/citologia , Células HEK293 , Humanos , Ácido Hialurônico/química , Hidrogéis/química , Inflamação , Cinética , Peptídeos/química , Processamento de Proteína Pós-Traducional , Reologia , Células-Tronco/citologia , Tensoativos/química , Transglutaminases/química
7.
J Oral Pathol Med ; 43(2): 117-24, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23834281

RESUMO

BACKGROUND: Recurrent aphthous ulcer (RAU) is an ulcerative disease of non-keratinized oral mucosa. Colon and bronchial epithelial cells produce interleukin-17C (IL-17C) upon stimulation of Toll-like receptor 2 (TLR2), TLR3 and TLR5, which are highly expressed in epithelial cells in RAU lesions. We therefore investigated the eventual presence and function of IL-17C in cultured human oral keratinocytes (HOK) and control biopsies compared to RAU lesions. METHODS: Expression of IL-17A, IL-17C, IL-17RA and IL-17RE was analysed in cultured HOK cells using quantitative real-time polymerase chain reaction (qRT-PCR). HOK cells were stimulated with IL-17C and analysed for IL-8 and tumour necrosis factor-α (TNF-α) using qRT-PCR. Control mucosa (n = 5) was immunostained for IL-17A, IL-17C, IL-8, TNF-α and mast cell tryptase and compared with RAU lesions (n = 5) using the mean grey scale value. RESULTS: IL-17C, but no IL-17A, mRNA was found in cultured HOK cells. Components of the heterodimeric IL-17RA/IL-17RE receptor for IL-17C were also highly expressed. Stimulation of HOK with IL-17C increased TNF-α mRNA (P = 0.03; IL-8 increase was not statistically significant). HOK in RAU lesions stained intensively for IL-17C compared to controls (P = 0.006). This was associated with increased epithelial immunostaining of TNF-α (P = 0.04) and IL-8 (P = 0.02). Most of the inflammatory cells which stained for IL-17A in control mucosa and RAU lesions were also mast cell tryptase positive. CONCLUSION: IL-17C is highly expressed in epithelial cells in RAU lesions, where it seems to stimulate oral keratinocytes via IL-17RA/IL-17RE to produce pro-inflammatory cytokines. Human oral epithelial cells are probably important inflammatory cells in RAU.


Assuntos
Interleucina-17/análise , Queratinócitos/imunologia , Mucosa Bucal/citologia , Receptores de Interleucina-17/análise , Estomatite Aftosa/patologia , Adolescente , Adulto , Idoso , Biópsia , Técnicas de Cultura de Células , Células Cultivadas , Criança , Células Epiteliais/imunologia , Imunofluorescência , Humanos , Interleucina-17/imunologia , Interleucina-8/análise , Pessoa de Meia-Idade , Mucosa Bucal/imunologia , Reação em Cadeia da Polimerase em Tempo Real , Estomatite Aftosa/imunologia , Triptases/análise , Fator de Necrose Tumoral alfa/análise , Adulto Jovem
8.
Acta Orthop ; 84(6): 585-92, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24237425

RESUMO

BACKGROUND AND PURPOSE: Degenerating cartilage releases potential danger signals that react with Toll-like receptor (TLR) type danger receptors. We investigated the presence and regulation of TLR1, TLR2, and TLR9 in human chondrocytes. METHODS: We studied TLR1, TLR2, TLR4, and TLR9 mRNA (qRT-PCR) and receptor proteins (by immunostaining) in primary mature healthy chondrocytes, developing chondrocytes, and degenerated chondrocytes in osteoarthritis (OA) tissue sections of different OARSI grades. Effects of a danger signal and of a pro-inflammatory cytokine on TLRs were also studied. RESULTS: In primary 2D-chondrocytes, TLR1 and TLR2 were strongly expressed. Stimulation of 2D and 3D chondrocytes with a TLR1/2-specific danger signal increased expression of TLR1 mRNA 1.3- to 1.8-fold, TLR2 mRNA 2.6- to 2.8-fold, and TNF-α mRNA 4.5- to 9-fold. On the other hand, TNF-α increased TLR1 mRNA] expression 16-fold, TLR2 mRNA expression 143- to 201-fold, and TNF-α mRNA expression 131- to 265-fold. TLR4 and TLR9 mRNA expression was not upregulated. There was a correlation between worsening of OA and increased TLR immunostaining in the superficial and middle cartilage zones, while chondrocytes assumed a CD166(×) progenitor phenotype. Correspondingly, TLR expression was high soon after differentiation of mesenchymal stem cells to chondrocytes. With maturation, it declined (TLR2, TLR9). INTERPRETATION: Mature chondrocytes express TLR1 and TLR2 and may react to cartilage matrix/chondrocyte-derived danger signals or degradation products. This leads to synthesis of pro-inflammatory cytokines, which stimulate further TLR and cytokine expression, establishing a vicious circle. This suggests that OA can act as an autoinflammatory disease and links the old mechanical wear-and-tear concept with modern biochemical views of OA. These findings suggest that the chondrocyte itself is the earliest and most important inflammatory cell in OA.


Assuntos
Cartilagem Articular/imunologia , Condrócitos/imunologia , Osteoartrite do Joelho/imunologia , Receptores Toll-Like/biossíntese , Diferenciação Celular/imunologia , Células Cultivadas , Condrócitos/patologia , Condrogênese/imunologia , Feminino , Regulação da Expressão Gênica/imunologia , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/imunologia , Osteoartrite do Joelho/patologia , RNA Mensageiro/genética , Índice de Gravidade de Doença , Receptor 1 Toll-Like/biossíntese , Receptor 1 Toll-Like/genética , Receptor 2 Toll-Like/biossíntese , Receptor 2 Toll-Like/genética , Receptor Toll-Like 9/biossíntese , Receptor Toll-Like 9/genética , Receptores Toll-Like/genética , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
9.
J Biomed Mater Res A ; 101(3): 842-52, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22968914

RESUMO

We hypothesized that when compared with conventional two-dimensional (2D) cultures, substrates containing 3D micropillars would allow cells to grow at levels, activating their cytoskeleton to promote osteogenesis. Fibroblasts, osteoblast-like cells, and mesenchymal stem cells (MSCs) were studied. Planar substrates were compared with 200-nm-, 5-µm-, and 20-µm-high pillars of Ormocomp®, Si, diamond-like carbon, or TiO(2). Scanning electron microscopy and staining of actin cytoskeleton showed 7.5-h adhesion to pillar edges and 5-day stretching between adhesion contacts > 100-µm distances of fibroblast and MSC in 3D networks, whereas SaOS-2 cells adhered flatly and individually on horizontal and vertical surfaces. ERK and ROCK immunostaining at 14 and 21 days confirmed activation of the cytoskeleton. In contrast to expectations, success to induce osteogenesis was dominated by the cytocompatibility of the substrate over the 3D structure. This was shown using early alkaline phosphatase, intermediate osteopontin, and late mineralization markers, together with bone nodule formation, which were seen in planar substrates and low-profile TiO(2) pillars, but were poor in the 20-µm landscape. The lack of intercellular contacts seems to halt the osteogenesis-promoting effects of cytoskeletal organization and tension described earlier.


Assuntos
Diferenciação Celular , Fibroblastos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo , Osteogênese , Alicerces Teciduais/química , Titânio/química , Antígenos de Diferenciação/biossíntese , Calcificação Fisiológica , Adesão Celular , Linhagem Celular , Citoesqueleto/metabolismo , Fibroblastos/citologia , Humanos , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA