Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Biol. Res ; 54: 3-3, 2021. graf, ilus
Artigo em Inglês | LILACS | ID: biblio-1505792

RESUMO

BACKGROUND: Testosterone regulates nutrient and energy balance to maintain protein synthesis and metabolism in cardiomyocytes, but supraphysiological concentrations induce cardiac hypertrophy. Previously, we determined that testosterone increased glucose uptake­via AMP-activated protein kinase (AMPK)­after acute treatment in cardiomyocytes. However, whether elevated glucose uptake is involved in long-term changes of glucose metabolism or is required during cardiomyocyte growth remained unknown. In this study, we hypothesized that glucose uptake and glycolysis increase in testosterone-treated cardiomyocytes through AMPK and androgen receptor (AR). METHODS: Cultured cardiomyocytes were stimulated with 100 nM testosterone for 24 h, and hypertrophy was verified by increased cell size and mRNA levels of ß-myosin heavy chain (ß-mhc). Glucose uptake was assessed by 2-NBDG. Glycolysis and glycolytic capacity were determined by measuring extracellular acidification rate (ECAR). RESULTS: Testosterone induced cardiomyocyte hypertrophy that was accompanied by increased glucose uptake, glycolysis enhancement and upregulated mRNA expression of hexokinase 2. In addition, testosterone increased AMPK phosphorylation (Thr172), while inhibition of both AMPK and AR blocked glycolysis and cardiomyocyte hypertrophy induced by testosterone. Moreover, testosterone supplementation in adult male rats by 5 weeks induced cardiac hypertrophy and upregulated ß-mhc, Hk2 and Pfk2 mRNA levels. CONCLUSION: These results indicate that testosterone stimulates glucose metabolism by activation of AMPK and AR signaling which are critical to induce cardiomyocyte hypertrophy.


Assuntos
Animais , Masculino , Ratos , Testosterona/farmacologia , Receptores Androgênicos/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Proteínas Quinases Ativadas por AMP/metabolismo , Glucose/metabolismo , Transdução de Sinais , Células Cultivadas , Hipertrofia , Miocárdio/patologia
2.
Eur J Pharmacol ; 875: 173036, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32101765

RESUMO

Ellagic acid, a naturally occurring phenol found in a variety of fruits and nuts has been shown to possess anti-inflammatory properties. However, the mechanism of action behind its anti-inflammatory action is unclear. Using human Jurkat T cells, our study examined the effects of ellagic acid (EA) on Ca2+ handling, in particular, store-operated Ca2+ entry (SOCE), a process critical to proper T cell function. We observed that the acute addition of EA-induced Ca2+ release with an EC50 of 63 µM. The Ca2+ release was significantly attenuated by Xestospongin C, a known inhibitor of the Inositol 1,4,5-trisphosphate receptor (IP3R) channel and was unaffected by the phospholipase C (PLC) inhibitor, U73122. Furthermore, chronic incubation of Jurkat T cells with EA not only decreased the ATP-induced Ca2+ release but also diminished the SOCE-mediated Ca2+ influx in a dose-dependent manner. This inhibition was confirmed by reduced Mn2+ entry rates in the EA-treated cells. The ATP-induced Ca2+ entry was also attenuated in EA-treated HEK293 cells transiently transfected with SOCE channel Orai1-myc and ER-sensor stromal interaction molecule (STIM1) (HEKSTIM/Orai). Moreover, EA treatment interfered with the Orai1 and STIM1 coupling by disrupting STIM1 puncta formation in the HEKSTIM/Orai cells. We observed that EA treatment reduced cytokine secretion and nuclear factor of activated T-cell transcriptional activity in stimulated T cells. Hence, by inhibiting SOCE mediated Ca2+ influx, EA decreased downstream activation of pro-inflammatory mediators. These results suggest a novel target for EA-mediated effects and provide insight into the mechanisms underlying EA-mediated anti-inflammatory effects.


Assuntos
Anti-Inflamatórios/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Cálcio/metabolismo , Ácido Elágico/farmacologia , Sinalização do Cálcio/imunologia , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Estrenos/farmacologia , Células HEK293 , Humanos , Mediadores da Inflamação/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Células Jurkat , Compostos Macrocíclicos/farmacologia , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/metabolismo , Oxazóis/farmacologia , Pirrolidinonas/farmacologia , Molécula 1 de Interação Estromal/metabolismo
3.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(12): 1469-1477, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30254016

RESUMO

The ATP-binding cassette transporter A1 (ABCA1) promotes cellular cholesterol efflux, leading to cholesterol binding to the extracellular lipid-free apolipoprotein A-I. ABCA1 regulates lipid content, glucose tolerance and insulin sensitivity in adipose tissue. In skeletal muscle, most GLUT4-mediated glucose transport occurs in the transverse tubule, a system composed by specialized cholesterol-enriched invaginations of the plasma membrane. We have reported that insulin resistant mice have higher cholesterol levels in transverse tubule from adult skeletal muscle. These high levels correlate with decreased GLUT4 trafficking and glucose uptake; however, the role of ABCA1 on skeletal muscle insulin-dependent glucose metabolism remains largely unexplored. Here, we evaluated the functional role of the ABCA1 on insulin-dependent signaling pathways, glucose uptake and cellular cholesterol content in adult skeletal muscle. Male mice were fed for 8 weeks with normal chow diet (NCD) or high fat diet (HFD). Compared to NCD-fed mice, ABCA1 mRNA levels and protein content were lower in muscle homogenates from HFD-fed mice. In Flexor digitorum brevis muscle from NCD-fed mice, shABCA1-RFP in vivo electroporation resulted in 65% reduction of ABCA1 protein content, 1.6-fold increased fiber cholesterol levels, 74% reduction in insulin-dependent Akt (Ser473) phosphorylation, total suppression of insulin-dependent GLUT4 translocation and decreased 2-NBDG uptake compared to fibers electroporated with the scrambled plasmid. Pre-incubation with methyl-ß cyclodextrin reestablished both GLUT4 translocation and 2-NBDG transport. Based on the present results, we suggest that decreased ABCA1 contributes to the anomalous cholesterol accumulation and decreased glucose transport displayed by skeletal muscle membranes in the insulin resistant condition.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Colesterol/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Insulina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , 4-Cloro-7-nitrobenzofurazano/análogos & derivados , 4-Cloro-7-nitrobenzofurazano/metabolismo , Animais , Membrana Celular/metabolismo , Desoxiglucose/análogos & derivados , Desoxiglucose/metabolismo , Dieta Hiperlipídica/efeitos adversos , Regulação para Baixo , Glucose/metabolismo , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Transporte Proteico , Transdução de Sinais
4.
Antioxid Redox Signal ; 29(12): 1125-1146, 2018 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-29357673

RESUMO

AIMS: Previous studies indicate that hippocampal synaptic plasticity and spatial memory processes entail calcium release from intracellular stores mediated by ryanodine receptor (RyR) channels. In particular, RyR-mediated Ca2+ release is central for the dendritic spine remodeling induced by brain-derived neurotrophic factor (BDNF), a neurotrophin that stimulates complex signaling pathways leading to memory-associated protein synthesis and structural plasticity. To examine if upregulation of ryanodine receptor type-2 (RyR2) channels and the spine remodeling induced by BDNF entail reactive oxygen species (ROS) generation, and to test if RyR2 downregulation affects BDNF-induced spine remodeling and spatial memory. RESULTS: Downregulation of RyR2 expression (short hairpin RNA [shRNA]) in primary hippocampal neurons, or inhibition of nitric oxide synthase (NOS) or NADPH oxidase, prevented agonist-mediated RyR-mediated Ca2+ release, whereas BDNF promoted cytoplasmic ROS generation. RyR2 downregulation or inhibitors of N-methyl-d-aspartate (NMDA) receptors, or NOS or of NADPH oxidase type-2 (NOX2) prevented RyR2 upregulation and the spine remodeling induced by BDNF, as did incubation with the antioxidant agent N-acetyl l-cysteine. In addition, intrahippocampal injection of RyR2-directed antisense oligodeoxynucleotides, which caused significant RyR2 downregulation, caused conspicuous defects in a memorized spatial memory task. INNOVATION: The present novel results emphasize the key role of redox-sensitive Ca2+ release mediated by RyR2 channels for hippocampal structural plasticity and spatial memory. CONCLUSION: Based on these combined results, we propose (i) that BDNF-induced RyR2-mediated Ca2+ release and ROS generation via NOS/NOX2 are strictly required for the dendritic spine remodeling and the RyR2 upregulation induced by BDNF, and (ii) that RyR2 channel expression is crucial for spatial memory processes. Antioxid. Redox Signal. 29, 1125-1146.


Assuntos
Cálcio/metabolismo , Hipocampo/metabolismo , Plasticidade Neuronal , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Memória Espacial , Animais , Células Cultivadas , Hipocampo/citologia , Oxirredução , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
5.
PLoS One ; 10(6): e0129238, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26046640

RESUMO

Glucose-stimulated insulin secretion (GSIS) from pancreatic ß-cells requires an increase in intracellular free Ca2+ concentration ([Ca2+]). Glucose uptake into ß-cells promotes Ca2+ influx and reactive oxygen species (ROS) generation. In other cell types, Ca2+ and ROS jointly induce Ca2+ release mediated by ryanodine receptor (RyR) channels. Therefore, we explored here if RyR-mediated Ca2+ release contributes to GSIS in ß-cell islets isolated from male rats. Stimulatory glucose increased islet insulin secretion, and promoted ROS generation in islets and dissociated ß-cells. Conventional PCR assays and immunostaining confirmed that ß-cells express RyR2, the cardiac RyR isoform. Extended incubation of ß-cell islets with inhibitory ryanodine suppressed GSIS; so did the antioxidant N-acetyl cysteine (NAC), which also decreased insulin secretion induced by glucose plus caffeine. Inhibitory ryanodine or NAC did not affect insulin secretion induced by glucose plus carbachol, which engages inositol 1,4,5-trisphosphate receptors. Incubation of islets with H2O2 in basal glucose increased insulin secretion 2-fold. Inhibitory ryanodine significantly decreased H2O2-stimulated insulin secretion and prevented the 4.5-fold increase of cytoplasmic [Ca2+] produced by incubation of dissociated ß-cells with H2O2. Addition of stimulatory glucose or H2O2 (in basal glucose) to ß-cells disaggregated from islets increased RyR2 S-glutathionylation to similar levels, measured by a proximity ligation assay; in contrast, NAC significantly reduced the RyR2 S-glutathionylation increase produced by stimulatory glucose. We propose that RyR2-mediated Ca2+ release, induced by the concomitant increases in [Ca2+] and ROS produced by stimulatory glucose, is an essential step in GSIS.


Assuntos
Cálcio/metabolismo , Glucose/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Insulina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Acetilcisteína/farmacologia , Animais , Cafeína/farmacologia , Carbacol/farmacologia , Linhagem Celular Tumoral , Células Cultivadas , Sequestradores de Radicais Livres/farmacologia , Expressão Gênica/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Imuno-Histoquímica , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Microscopia Confocal , Oxidantes/farmacologia , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rianodina/farmacologia , Canal de Liberação de Cálcio do Receptor de Rianodina/genética
6.
J Biol Chem ; 287(4): 2863-76, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22139840

RESUMO

Malignant hyperthermia susceptibility (MHS) is primarily conferred by mutations within ryanodine receptor type 1 (RYR1). Here we address how the MHS mutation T4826I within the S4-S5 linker influences excitation-contraction coupling and resting myoplasmic Ca(2+) concentration ([Ca(2+)](rest)) in flexor digitorum brevis (FDB) and vastus lateralis prepared from heterozygous (Het) and homozygous (Hom) T4826I-RYR1 knock-in mice (Yuen, B. T., Boncompagni, S., Feng, W., Yang, T., Lopez, J. R., Matthaei, K. I., Goth, S. R., Protasi, F., Franzini-Armstrong, C., Allen, P. D., and Pessah, I. N. (2011) FASEB J. doi:22131268). FDB responses to electrical stimuli and acute halothane (0.1%, v/v) exposure showed a rank order of Hom ≫ Het ≫ WT. Release of Ca(2+) from the sarcoplasmic reticulum and Ca(2+) entry contributed to halothane-triggered increases in [Ca(2+)](rest) in Hom FDBs and elicited pronounced Ca(2+) oscillations in ∼30% of FDBs tested. Genotype contributed significantly elevated [Ca(2+)](rest) (Hom > Het > WT) measured in vivo using ion-selective microelectrodes. Het and Hom oxygen consumption rates measured in intact myotubes using the Seahorse Bioscience (Billerica, MA) flux analyzer and mitochondrial content measured with MitoTracker were lower than WT, whereas total cellular calpain activity was higher than WT. Muscle membranes did not differ in RYR1 expression nor in Ser(2844) phosphorylation among the genotypes. Single channel analysis showed highly divergent gating behavior with Hom and WT favoring open and closed states, respectively, whereas Het exhibited heterogeneous gating behaviors. [(3)H]Ryanodine binding analysis revealed a gene dose influence on binding density and regulation by Ca(2+), Mg(2+), and temperature. Pronounced abnormalities inherent in T4826I-RYR1 channels confer MHS and promote basal disturbances of excitation-contraction coupling, [Ca(2+)](rest), and oxygen consumption rates. Considering that both Het and Hom T4826I-RYR1 mice are viable, the remarkable isolated single channel dysfunction mediated through this mutation in S4-S5 cytoplasmic linker must be highly regulated in vivo.


Assuntos
Dosagem de Genes , Heterozigoto , Homozigoto , Hipertermia Maligna/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Mutação de Sentido Incorreto , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Substituição de Aminoácidos , Animais , Cálcio/metabolismo , Hipertermia Maligna/genética , Camundongos , Camundongos Transgênicos , Estrutura Terciária de Proteína , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Retículo Sarcoplasmático/genética , Retículo Sarcoplasmático/metabolismo
7.
Mol Pharmacol ; 79(3): 420-31, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21156754

RESUMO

Mutations in ryanodine receptor type 1 (RyR1) confer malignant hyperthermia susceptibility. How inherent impairments in Ca(2+) channel regulation affect skeletal muscle function in myotubes and adult fibers under basal (nontriggering) conditions are not understood. Myotubes, adult flexor digitorum brevis (FDB) fibers, and sarcoplasmic reticulum skeletal membranes were isolated from heterozygous knockin R163C and wild-type (WT) mice. Compared with WT myotubules, R163C myotubes have reduced Ca(2+) transient amplitudes in response to electrical field pulses; however, R163C FDB fibers do not differ in their responses to electrical stimuli, despite heightened cellular cytoplasmic resting Ca(2+) ([Ca(2+)](rest)) and sensitivity to halothane. Immunoblotting of membranes from each genotype shows similar expression of RyR1, FK506 binding protein 12 kDa, and Ca(2+)-ATPase, but RyR1 (2844)Ser phosphorylation in R163C muscle is 31% higher than that of WT muscle (p < 0.001). RyR1 channels reconstituted in planar lipid bilayers reveal ∼65% of R163C channels exhibit ≥2-fold greater open probability (P(o)) than WT, with prolonged mean open dwell times and shortened closed dwell times. [(3)H]Ryanodine (Ry) binding and single-channel analyses show that R163C-RyR1 has altered regulation compared with WT: 1) 3-fold higher sensitivity to Ca(2+) activation; 2) 2-fold greater [(3)H]Ry receptor occupancy; 3) comparatively higher channel activity, even in reducing glutathione buffer; 4) enhanced RyR1 activity both at 25 and 37°C; and 5) elevated cytoplasmic [Ca(2+)](rest). R163C channels are inherently more active than WT channels, a functional impairment that cannot be reversed by dephosphorylation with protein phosphatase. Dysregulated R163C channels produce a more overt phenotype in myotubes than in adult fibers in the absence of triggering agents, suggesting tighter negative regulation of R163C-RyR1 within the Ca(2+) release unit of adult fibers.


Assuntos
Hipertermia Maligna/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , Animais , Western Blotting , Cálcio/metabolismo , Heterozigoto , Hipertermia Maligna/fisiopatologia , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Oxirredução , Proteína Fosfatase 1/metabolismo , Rianodina/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
8.
J Biol Chem ; 286(1): 99-113, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-20978128

RESUMO

Malignant hyperthermia (MH) and central core disease in humans have been associated with mutations in the skeletal ryanodine receptor (RyR1). Heterozygous mice expressing the human MH/central core disease RyR1 R163C mutation exhibit MH when exposed to halothane or heat stress. Considering that many MH symptoms resemble those that could ensue from a mitochondrial dysfunction (e.g. metabolic acidosis and hyperthermia) and that MH-susceptible mice or humans have a higher than normal cytoplasmic Ca(2+) concentration at rest, we evaluated the role of mitochondria in skeletal muscle from R163C compared with wild type mice under basal (untriggered) conditions. R163C skeletal muscle exhibited a significant increase in matrix Ca(2+), increased reactive oxygen species production, lower expression of mitochondrial proteins, and higher mtDNA copy number. These changes, in conjunction with lower myoglobin and glycogen contents, Myh4 and GAPDH transcript levels, GAPDH activity, and lower glucose utilization suggested a switch to a compromised bioenergetic state characterized by both low oxidative phosphorylation and glycolysis. The shift in bioenergetic state was accompanied by a dysregulation of Ca(2+)-responsive signaling pathways regulated by calcineurin and ERK1/2. Chronically elevated resting Ca(2+) in R163C skeletal muscle elicited the maintenance of a fast-twitch fiber program and the development of insulin resistance-like phenotype as part of a metabolic adaptation to the R163C RyR1 mutation.


Assuntos
Metabolismo Basal/genética , Técnicas de Introdução de Genes , Predisposição Genética para Doença/genética , Hipertermia Maligna/metabolismo , Músculo Esquelético/metabolismo , Mutação , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Animais , Calcineurina/metabolismo , Cálcio/metabolismo , Diafragma/metabolismo , Diafragma/fisiopatologia , Feminino , Regulação da Expressão Gênica , Humanos , Cinética , Hipertermia Maligna/genética , Hipertermia Maligna/patologia , Hipertermia Maligna/fisiopatologia , Camundongos , Mitocôndrias/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Estresse Oxidativo/genética , Oxigênio/metabolismo , Permeabilidade , Ratos , Transdução de Sinais/genética
9.
J Biol Chem ; 281(36): 26473-82, 2006 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-16762927

RESUMO

We report here the presence of an NADPH oxidase (NOX) activity both in intact and in isolated transverse tubules and in triads isolated from mammalian skeletal muscle, as established by immunochemical, enzymatic, and pharmacological criteria. Immunohistochemical determinations with NOX antibodies showed that the gp91(phox) membrane subunit and the cytoplasmic regulatory p47(phox) subunit co-localized in transverse tubules of adult mice fibers with the alpha1s subunit of dihydropyridine receptors. Western blot analysis revealed that isolated triads contained the integral membrane subunits gp91(phox) and p22(phox), which were markedly enriched in isolated transverse tubules but absent from junctional sarcoplasmic reticulum vesicles. Isolated triads and transverse tubules, but not junctional sarcoplasmic reticulum, also contained varying amounts of the cytoplasmic NOX regulatory subunits p47(phox) and p67(phox). NADPH or NADH elicited superoxide anion and hydrogen peroxide generation by isolated triads; both activities were inhibited by NOX inhibitors but not by rotenone. NADH diminished the total thiol content of triads by one-third; catalase or apocynin, a NOX inhibitor, prevented this effect. NADPH enhanced the activity of ryanodine receptor type 1 (RyR1) in triads, measured through [3H]ryanodine binding and calcium release kinetics, and increased significantly RyR1 S-glutathionylation over basal levels. Preincubation with reducing agents or NOX inhibitors abolished the enhancement of RyR1 activity produced by NADPH and prevented NADPH-induced RyR1 S-glutathionylation. We propose that reactive oxygen species generated by the transverse tubule NOX activate via redox modification the neighboring RyR1 Ca2+ release channels. Possible implications of this putative mechanism for skeletal muscle function are discussed.


Assuntos
Cálcio/metabolismo , Glutationa/metabolismo , Fibras Musculares Esqueléticas , NADPH Oxidases/metabolismo , Isoformas de Proteínas/metabolismo , Subunidades Proteicas/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Canais de Cálcio Tipo L/metabolismo , Peróxido de Hidrogênio/metabolismo , Camundongos , Fibras Musculares Esqueléticas/enzimologia , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/ultraestrutura , NAD/metabolismo , NADP/metabolismo , NADPH Oxidases/antagonistas & inibidores , Oxidantes/metabolismo , Coelhos , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/ultraestrutura
10.
Biol. Res ; 39(3): 493-503, 2006. ilus, graf
Artigo em Inglês | LILACS | ID: lil-437382

RESUMO

We measured the kinetics of calcium dissociation from calsequestrin in solution or forming part of isolated junctional sarcoplasmic reticulum membranes by mixing calsequestrin equilibrated with calcium with calcium-free solutions in a stopped-flow system. In parallel, we measured the kinetics of the intrinsic fluorescence changes that take place following calcium dissociation from calsequestrin. We found that at 25°C calcium dissociation was 10-fold faster for calsequestrin attached to junctional membranes (k = 109 s-1) than in solution. These results imply that calcium dissociation from calsequestrin in vivo is not rate limiting during excitation-contraction coupling. In addition, we found that the intrinsic fluorescence decrease for calsequestrin in solution or forming part of junctional membranes was significantly slower than the rates of calcium dissociation. The kinetics of intrinsic fluorescence changes had two components for calsequestrin associated to junctional membranes and only one for calsequestrin in solution; the faster component was 8-fold faster (k = 54.1 s-1) than the slower component (k = 6.9 s-1), which had the same k value as for calsequestrin in solution. These combined results suggest that the presence of calsequestrin at high concentrations in a restricted space, such as when bound to the junctional membrane, accelerates calcium dissociation and the resulting structural changes, presumably as a result of cooperative molecular interactions.


Assuntos
Animais , Coelhos , Cálcio/metabolismo , Calsequestrina/metabolismo , Retículo Sarcoplasmático/metabolismo , Eletroforese em Gel de Poliacrilamida , Membranas Intracelulares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA