Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Antioxid Redox Signal ; 29(12): 1125-1146, 2018 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-29357673

RESUMO

AIMS: Previous studies indicate that hippocampal synaptic plasticity and spatial memory processes entail calcium release from intracellular stores mediated by ryanodine receptor (RyR) channels. In particular, RyR-mediated Ca2+ release is central for the dendritic spine remodeling induced by brain-derived neurotrophic factor (BDNF), a neurotrophin that stimulates complex signaling pathways leading to memory-associated protein synthesis and structural plasticity. To examine if upregulation of ryanodine receptor type-2 (RyR2) channels and the spine remodeling induced by BDNF entail reactive oxygen species (ROS) generation, and to test if RyR2 downregulation affects BDNF-induced spine remodeling and spatial memory. RESULTS: Downregulation of RyR2 expression (short hairpin RNA [shRNA]) in primary hippocampal neurons, or inhibition of nitric oxide synthase (NOS) or NADPH oxidase, prevented agonist-mediated RyR-mediated Ca2+ release, whereas BDNF promoted cytoplasmic ROS generation. RyR2 downregulation or inhibitors of N-methyl-d-aspartate (NMDA) receptors, or NOS or of NADPH oxidase type-2 (NOX2) prevented RyR2 upregulation and the spine remodeling induced by BDNF, as did incubation with the antioxidant agent N-acetyl l-cysteine. In addition, intrahippocampal injection of RyR2-directed antisense oligodeoxynucleotides, which caused significant RyR2 downregulation, caused conspicuous defects in a memorized spatial memory task. INNOVATION: The present novel results emphasize the key role of redox-sensitive Ca2+ release mediated by RyR2 channels for hippocampal structural plasticity and spatial memory. CONCLUSION: Based on these combined results, we propose (i) that BDNF-induced RyR2-mediated Ca2+ release and ROS generation via NOS/NOX2 are strictly required for the dendritic spine remodeling and the RyR2 upregulation induced by BDNF, and (ii) that RyR2 channel expression is crucial for spatial memory processes. Antioxid. Redox Signal. 29, 1125-1146.


Assuntos
Cálcio/metabolismo , Hipocampo/metabolismo , Plasticidade Neuronal , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Memória Espacial , Animais , Células Cultivadas , Hipocampo/citologia , Oxirredução , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
2.
J Biol Chem ; 287(4): 2863-76, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22139840

RESUMO

Malignant hyperthermia susceptibility (MHS) is primarily conferred by mutations within ryanodine receptor type 1 (RYR1). Here we address how the MHS mutation T4826I within the S4-S5 linker influences excitation-contraction coupling and resting myoplasmic Ca(2+) concentration ([Ca(2+)](rest)) in flexor digitorum brevis (FDB) and vastus lateralis prepared from heterozygous (Het) and homozygous (Hom) T4826I-RYR1 knock-in mice (Yuen, B. T., Boncompagni, S., Feng, W., Yang, T., Lopez, J. R., Matthaei, K. I., Goth, S. R., Protasi, F., Franzini-Armstrong, C., Allen, P. D., and Pessah, I. N. (2011) FASEB J. doi:22131268). FDB responses to electrical stimuli and acute halothane (0.1%, v/v) exposure showed a rank order of Hom ≫ Het ≫ WT. Release of Ca(2+) from the sarcoplasmic reticulum and Ca(2+) entry contributed to halothane-triggered increases in [Ca(2+)](rest) in Hom FDBs and elicited pronounced Ca(2+) oscillations in ∼30% of FDBs tested. Genotype contributed significantly elevated [Ca(2+)](rest) (Hom > Het > WT) measured in vivo using ion-selective microelectrodes. Het and Hom oxygen consumption rates measured in intact myotubes using the Seahorse Bioscience (Billerica, MA) flux analyzer and mitochondrial content measured with MitoTracker were lower than WT, whereas total cellular calpain activity was higher than WT. Muscle membranes did not differ in RYR1 expression nor in Ser(2844) phosphorylation among the genotypes. Single channel analysis showed highly divergent gating behavior with Hom and WT favoring open and closed states, respectively, whereas Het exhibited heterogeneous gating behaviors. [(3)H]Ryanodine binding analysis revealed a gene dose influence on binding density and regulation by Ca(2+), Mg(2+), and temperature. Pronounced abnormalities inherent in T4826I-RYR1 channels confer MHS and promote basal disturbances of excitation-contraction coupling, [Ca(2+)](rest), and oxygen consumption rates. Considering that both Het and Hom T4826I-RYR1 mice are viable, the remarkable isolated single channel dysfunction mediated through this mutation in S4-S5 cytoplasmic linker must be highly regulated in vivo.


Assuntos
Dosagem de Genes , Heterozigoto , Homozigoto , Hipertermia Maligna/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Mutação de Sentido Incorreto , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Substituição de Aminoácidos , Animais , Cálcio/metabolismo , Hipertermia Maligna/genética , Camundongos , Camundongos Transgênicos , Estrutura Terciária de Proteína , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Retículo Sarcoplasmático/genética , Retículo Sarcoplasmático/metabolismo
3.
Mol Pharmacol ; 79(3): 420-31, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21156754

RESUMO

Mutations in ryanodine receptor type 1 (RyR1) confer malignant hyperthermia susceptibility. How inherent impairments in Ca(2+) channel regulation affect skeletal muscle function in myotubes and adult fibers under basal (nontriggering) conditions are not understood. Myotubes, adult flexor digitorum brevis (FDB) fibers, and sarcoplasmic reticulum skeletal membranes were isolated from heterozygous knockin R163C and wild-type (WT) mice. Compared with WT myotubules, R163C myotubes have reduced Ca(2+) transient amplitudes in response to electrical field pulses; however, R163C FDB fibers do not differ in their responses to electrical stimuli, despite heightened cellular cytoplasmic resting Ca(2+) ([Ca(2+)](rest)) and sensitivity to halothane. Immunoblotting of membranes from each genotype shows similar expression of RyR1, FK506 binding protein 12 kDa, and Ca(2+)-ATPase, but RyR1 (2844)Ser phosphorylation in R163C muscle is 31% higher than that of WT muscle (p < 0.001). RyR1 channels reconstituted in planar lipid bilayers reveal ∼65% of R163C channels exhibit ≥2-fold greater open probability (P(o)) than WT, with prolonged mean open dwell times and shortened closed dwell times. [(3)H]Ryanodine (Ry) binding and single-channel analyses show that R163C-RyR1 has altered regulation compared with WT: 1) 3-fold higher sensitivity to Ca(2+) activation; 2) 2-fold greater [(3)H]Ry receptor occupancy; 3) comparatively higher channel activity, even in reducing glutathione buffer; 4) enhanced RyR1 activity both at 25 and 37°C; and 5) elevated cytoplasmic [Ca(2+)](rest). R163C channels are inherently more active than WT channels, a functional impairment that cannot be reversed by dephosphorylation with protein phosphatase. Dysregulated R163C channels produce a more overt phenotype in myotubes than in adult fibers in the absence of triggering agents, suggesting tighter negative regulation of R163C-RyR1 within the Ca(2+) release unit of adult fibers.


Assuntos
Hipertermia Maligna/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , Animais , Western Blotting , Cálcio/metabolismo , Heterozigoto , Hipertermia Maligna/fisiopatologia , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Oxirredução , Proteína Fosfatase 1/metabolismo , Rianodina/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA