Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Elife ; 112022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35758636

RESUMO

Increased intracellular iron spurs mitochondrial biogenesis and respiration to satisfy high-energy demand during osteoclast differentiation and bone-resorbing activities. Transferrin receptor 1 (Tfr1) mediates cellular iron uptake through endocytosis of iron-loaded transferrin, and its expression increases during osteoclast differentiation. Nonetheless, the precise functions of Tfr1 and Tfr1-mediated iron uptake in osteoclast biology and skeletal homeostasis remain incompletely understood. To investigate the role of Tfr1 in osteoclast lineage cells in vivo and in vitro, we crossed Tfrc (encoding Tfr1)-floxed mice with Lyz2 (LysM)-Cre and Cathepsin K (Ctsk)-Cre mice to generate Tfrc conditional knockout mice in myeloid osteoclast precursors (Tfr1ΔLysM) or differentiated osteoclasts (Tfr1ΔCtsk), respectively. Skeletal phenotyping by µCT and histology unveiled a significant increase in trabecular bone mass with normal osteoclast number in long bones of 10-week-old young and 6-month-old adult female but not male Tfr1ΔLysM mice. Although high trabecular bone volume in long bones was observed in both male and female Tfr1ΔCtsk mice, this phenotype was more pronounced in female knockout mice. Consistent with this gender-dependent phenomena, estrogen deficiency induced by ovariectomy decreased trabecular bone mass in Tfr1ΔLysM mice. Mechanistically, disruption of Tfr1 expression attenuated mitochondrial metabolism and cytoskeletal organization in mature osteoclasts in vitro by attenuating mitochondrial respiration and activation of the Src-Rac1-WAVE regulatory complex axis, respectively, leading to decreased bone resorption with little impact on osteoclast differentiation. These results indicate that Tfr1-mediated iron uptake is specifically required for osteoclast function and is indispensable for bone remodeling in a gender-dependent manner.


Assuntos
Reabsorção Óssea , Ferro , Osteoclastos , Receptores da Transferrina , Animais , Reabsorção Óssea/patologia , Citoesqueleto/metabolismo , Feminino , Ferro/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Osteoclastos/metabolismo , Receptores da Transferrina/genética
3.
Nat Cell Biol ; 22(1): 49-59, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31907410

RESUMO

Osteoclasts are multinucleated cells of the monocyte/macrophage lineage that degrade bone. Here, we used lineage tracing studies-labelling cells expressing Cx3cr1, Csf1r or Flt3-to identify the precursors of osteoclasts in mice. We identified an erythromyeloid progenitor (EMP)-derived osteoclast precursor population. Yolk-sac macrophages of EMP origin produced neonatal osteoclasts that can create a space for postnatal bone marrow haematopoiesis. Furthermore, EMPs gave rise to long-lasting osteoclast precursors that contributed to postnatal bone remodelling in both physiological and pathological settings. Our single-cell RNA-sequencing data showed that EMP-derived osteoclast precursors arose independently of the haematopoietic stem cell (HSC) lineage and the data from fate tracking of EMP and HSC lineages indicated the possibility of cell-cell fusion between these two lineages. Cx3cr1+ yolk-sac macrophage descendants resided in the adult spleen, and parabiosis experiments showed that these cells migrated through the bloodstream to the remodelled bone after injury.


Assuntos
Hematopoese/fisiologia , Homeostase/fisiologia , Osteoclastos/metabolismo , Saco Vitelino/metabolismo , Animais , Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Macrófagos/metabolismo , Camundongos
4.
Nat Commun ; 9(1): 5191, 2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-30518764

RESUMO

The pace of repair declines with age and, while exposure to a young circulation can rejuvenate fracture repair, the cell types and factors responsible for rejuvenation are unknown. Here we report that young macrophage cells produce factors that promote osteoblast differentiation of old bone marrow stromal cells. Heterochronic parabiosis exploiting young mice in which macrophages can be depleted and fractionated bone marrow transplantation experiments show that young macrophages rejuvenate fracture repair, and old macrophage cells slow healing in young mice. Proteomic analysis of the secretomes identify differential proteins secreted between old and young macrophages, such as low-density lipoprotein receptor-related protein 1 (Lrp1). Lrp1 is produced by young cells, and depleting Lrp1 abrogates the ability to rejuvenate fracture repair, while treating old mice with recombinant Lrp1 improves fracture healing. Macrophages and proteins they secrete orchestrate the fracture repair process, and young cells produce proteins that rejuvenate fracture repair in mice.


Assuntos
Consolidação da Fratura , Fraturas Ósseas/fisiopatologia , Macrófagos/metabolismo , Receptores de LDL/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Transplante de Medula Óssea , Feminino , Fraturas Ósseas/genética , Fraturas Ósseas/metabolismo , Fraturas Ósseas/terapia , Humanos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteogênese , Receptores de LDL/genética , Rejuvenescimento , Células Estromais/citologia , Células Estromais/metabolismo , Células Estromais/transplante , Proteínas Supressoras de Tumor/genética
5.
Am J Physiol Gastrointest Liver Physiol ; 309(8): G635-47, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26294671

RESUMO

Divalent metal-ion transporter-1 (DMT1) is a widely expressed iron-preferring membrane-transport protein that serves a critical role in erythroid iron utilization. We have investigated its role in intestinal metal absorption by studying a mouse model lacking intestinal DMT1 (i.e., DMT1(int/int)). DMT1(int/int) mice exhibited a profound hypochromic-microcytic anemia, splenomegaly, and cardiomegaly. That the anemia was due to iron deficiency was demonstrated by the following observations in DMT1(int/int) mice: 1) blood iron and tissue nonheme-iron stores were depleted; 2) mRNA expression of liver hepcidin (Hamp1) was depressed; and 3) intraperitoneal iron injection corrected the anemia, and reversed the changes in blood iron, nonheme-iron stores, and hepcidin expression levels. We observed decreased total iron content in multiple tissues from DMT1(int/int) mice compared with DMT1(+/+) mice but no meaningful change in copper, manganese, or zinc. DMT1(int/int) mice absorbed (64)Cu and (54)Mn from an intragastric dose to the same extent as did DMT1(+/+) mice but the absorption of (59)Fe was virtually abolished in DMT1(int/int) mice. This study reveals a critical function for DMT1 in intestinal nonheme-iron absorption for normal growth and development. Further, this work demonstrates that intestinal DMT1 is not required for the intestinal transport of copper, manganese, or zinc.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Cobre/metabolismo , Absorção Intestinal/fisiologia , Ferro/metabolismo , Manganês/metabolismo , Anemia Hipocrômica/genética , Anemia Hipocrômica/patologia , Animais , Proteínas de Transporte de Cátions/genética , Transportador de Cobre 1 , Regulação da Expressão Gênica/fisiologia , Homeostase/fisiologia , Camundongos , Camundongos Knockout , Zinco/metabolismo
6.
EBioMedicine ; 2(11): 1705-17, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26870796

RESUMO

Transferrin receptor (Tfr1) is ubiquitously expressed, but its roles in non-hematopoietic cells are incompletely understood. We used a tissue-specific conditional knockout strategy to ask whether skeletal muscle required Tfr1 for iron uptake. We found that iron assimilation via Tfr1 was critical for skeletal muscle metabolism, and that iron deficiency in muscle led to dramatic changes, not only in muscle, but also in adipose tissue and liver. Inactivation of Tfr1 incapacitated normal energy production in muscle, leading to growth arrest and a muted attempt to switch to fatty acid ß oxidation, using up fat stores. Starvation signals stimulated gluconeogenesis in the liver, but amino acid substrates became limiting and hypoglycemia ensued. Surprisingly, the liver was also iron deficient, and production of the iron regulatory hormone hepcidin was depressed. Our observations reveal a complex interaction between iron homeostasis and metabolism that has implications for metabolic and iron disorders.


Assuntos
Músculos/metabolismo , Receptores da Transferrina/deficiência , Animais , Análise por Conglomerados , Regulação da Expressão Gênica , Genes Letais , Deficiências de Ferro , Distúrbios do Metabolismo do Ferro/genética , Distúrbios do Metabolismo do Ferro/metabolismo , Distúrbios do Metabolismo do Ferro/patologia , Fígado/metabolismo , Metaboloma , Metabolômica/métodos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculos/patologia , Fosforilação Oxidativa , Fenótipo , Receptores da Transferrina/genética
7.
Cell Metab ; 17(3): 319-28, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23473029

RESUMO

Transition metals are frequently used as cofactors for enzymes and oxygen-carrying proteins that take advantage of their propensity to gain and lose single electrons. Metals are particularly important in mitochondria, where they play essential roles in the production of ATP and detoxification of reactive oxygen species. At the same time, transition metals (particularly Fe and Cu) can promote the formation of harmful radicals, necessitating meticulous control of metal concentration and subcellular compartmentalization. We summarize our current understanding of Fe and Cu in mammalian mitochondrial biology and discuss human diseases associated with aberrations in mitochondrial metal homeostasis.


Assuntos
Heme/biossíntese , Homeostase/fisiologia , Proteínas Ferro-Enxofre/biossíntese , Ferro/metabolismo , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/fisiopatologia , Modelos Biológicos , Humanos
8.
Cancer Res ; 68(18): 7561-9, 2008 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-18794144

RESUMO

Histone deacetylase inhibitors (HDACI) are promising antitumor agents. Although transcriptional deregulation is thought to be the main mechanism underlying their therapeutic effects, the exact mechanism and targets by which HDACIs achieve their antitumor effects remain poorly understood. It is not known whether any of the HDAC members support robust tumor growth. In this report, we show that HDAC6, a cytoplasmic-localized and cytoskeleton-associated deacetylase, is required for efficient oncogenic transformation and tumor formation. We found that HDAC6 expression is induced upon oncogenic Ras transformation. Fibroblasts deficient in HDAC6 are more resistant to both oncogenic Ras and ErbB2-dependent transformation, indicating a critical role for HDAC6 in oncogene-induced transformation. Supporting this hypothesis, inactivation of HDAC6 in several cancer cell lines reduces anchorage-independent growth and the ability to form tumors in mice. The loss of anchorage-independent growth is associated with increased anoikis and defects in AKT and extracellular signal-regulated kinase activation upon loss of adhesion. Lastly, HDAC6-null mice are more resistant to chemical carcinogen-induced skin tumors. Our results provide the first experimental evidence that a specific HDAC member is required for efficient oncogenic transformation and indicate that HDAC6 is an important component underlying the antitumor effects of HDACIs.


Assuntos
Transformação Celular Neoplásica/metabolismo , Histona Desacetilases/metabolismo , Animais , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Carcinoma de Células Escamosas/enzimologia , Carcinoma de Células Escamosas/patologia , Processos de Crescimento Celular/fisiologia , Transformação Celular Neoplásica/patologia , Citoplasma/enzimologia , Feminino , Fibroblastos/enzimologia , Desacetilase 6 de Histona , Inibidores de Histona Desacetilases , Histona Desacetilases/genética , Humanos , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neoplasias Ovarianas/enzimologia , Neoplasias Ovarianas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genética
9.
Cancer Res ; 68(3): 693-9, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18245468

RESUMO

TBX3 is a transcription factor of the T-box gene family. Mutations in the TBX3 gene can cause hypoplastic or absent mammary glands. Previous studies have shown that TBX3 might be associated with breast cancer. Here, we show that TBX3 is overexpressed in malignant cells of primary breast cancer tissues by immunohistochemistry. TBX3 interacts with histone deacetylases (HDAC) 1, 2, 3, and 5. TBX3 interacts with HDAC1, 2, and 3 via two distinct binding sites. However, deletion of the repression domain (amino acids 566-624) of TBX3 completely abolishes its interaction with HDAC5. Endogenous TBX3 and HDACs interaction and colocalization are found in a breast cancer cell line by coimmunoprecipitation and immunofluorescence, respectively. The functional significance of the interaction between TBX3 and HDAC is also tested in a p14(ARF)-luciferase reporter system. Results indicate that TBX3 represses expression of p14(ARF) tumor suppressor and that a HDAC inhibitor is able to reverse the TBX3 repressive function in a dosage-dependent manner. This study suggests that TBX3 may function by recruiting HDACs to the T-box binding site in the promoter region. TBX3 repression to its targets is dependent on HDAC activity. TBX3 may serve as a biomarker for breast cancer and have significant applications in both breast cancer diagnosis and treatment.


Assuntos
Neoplasias da Mama/metabolismo , Histona Desacetilases/metabolismo , Proteínas com Domínio T/biossíntese , Proteína Supressora de Tumor p14ARF/biossíntese , Animais , Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Feminino , Humanos , Imuno-Histoquímica , Isoenzimas/metabolismo , Pessoa de Meia-Idade , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Proteínas com Domínio T/genética , Transfecção , Proteína Supressora de Tumor p14ARF/antagonistas & inibidores , Proteína Supressora de Tumor p14ARF/genética , Regulação para Cima
10.
J Biol Chem ; 282(11): 8393-403, 2007 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-17194709

RESUMO

In addition to regulating cell motility, contractility, and cytokinesis, the actin cytoskeleton plays a critical role in the regulation of transcription and gene expression. We have previously identified a novel muscle-specific actin-binding protein, STARS (striated muscle activator of Rho signaling), which directly binds actin and stimulates serum-response factor (SRF)-dependent transcription. To further dissect the STARS/SRF pathway, we performed a yeast two-hybrid screen of a skeletal muscle cDNA library using STARS as bait, and we identified two novel members of the ABLIM protein family, ABLIM-2 and -3, as STARS-interacting proteins. ABLIM-1, which is expressed in retina, brain, and muscle tissue, has been postulated to function as a tumor suppressor. ABLIM-2 and -3 display distinct tissue-specific expression patterns with the highest expression levels in muscle and neuronal tissue. Moreover, these novel ABLIM proteins strongly bind F-actin, are localized to actin stress fibers, and synergistically enhance STARS-dependent activation of SRF. Conversely, knockdown of endogenous ABLIM expression utilizing small interfering RNA significantly blunted SRF-dependent transcription in C2C12 skeletal muscle cells. These findings suggest that the members of the novel ABLIM protein family may serve as a scaffold for signaling modules of the actin cytoskeleton and thereby modulate transcription.


Assuntos
Actinas/metabolismo , Proteínas dos Microfilamentos/metabolismo , Sequência de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Humanos , Proteínas com Domínio LIM , Camundongos , Proteínas dos Microfilamentos/química , Dados de Sequência Molecular , Músculo Esquelético/metabolismo , Ligação Proteica , Retina/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Técnicas do Sistema de Duplo-Híbrido
11.
Mol Cell Biol ; 25(8): 3173-81, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15798203

RESUMO

Myocardin and the myocardin-related transcription factors (MRTFs) MRTF-A and MRTF-B are coactivators for serum response factor (SRF), which regulates genes involved in cell proliferation, migration, cytoskeletal dynamics, and myogenesis. MRTF-A has been shown to translocate to the nucleus and activate SRF in response to Rho signaling and actin polymerization. Previously, we described a muscle-specific actin-binding protein named striated muscle activator of Rho signaling (STARS) that also activates SRF through a Rho-dependent mechanism. Here we show that STARS activates SRF by inducing the nuclear translocation of MRTFs. The STARS-dependent nuclear import of MRTFs requires RhoA and actin polymerization, and the actin-binding domain of STARS is necessary and sufficient for this activity. A knockdown of endogenous STARS expression by using small interfering RNA significantly reduced SRF activity in differentiated C2C12 skeletal muscle cells and cardiac myocytes. The ability of STARS to promote the nuclear localization of MRTFs and SRF-mediated transcription provides a potential muscle-specific mechanism for linking changes in actin dynamics and sarcomere structure with striated muscle gene expression.


Assuntos
Actinas/metabolismo , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas dos Microfilamentos/fisiologia , Desenvolvimento Muscular/fisiologia , Proteínas de Fusão Oncogênica/metabolismo , Fator de Resposta Sérica/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Linhagem Celular , Núcleo Celular/química , Proteínas de Ligação a DNA/análise , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos , Proteínas dos Microfilamentos/antagonistas & inibidores , Proteínas dos Microfilamentos/metabolismo , Desenvolvimento Muscular/genética , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Fusão Oncogênica/análise , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Transdução de Sinais , Transativadores/metabolismo , Fatores de Transcrição/análise , Fatores de Transcrição/antagonistas & inibidores , Proteína rhoA de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA