Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Elife ; 122024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597186

RESUMO

Epithelial intercellular adhesion molecule (ICAM)-1 is apically polarized, interacts with, and guides leukocytes across epithelial barriers. Polarized hepatic epithelia organize their apical membrane domain into bile canaliculi and ducts, which are not accessible to circulating immune cells but that nevertheless confine most of ICAM-1. Here, by analyzing ICAM-1_KO human hepatic cells, liver organoids from ICAM-1_KO mice and rescue-of-function experiments, we show that ICAM-1 regulates epithelial apicobasal polarity in a leukocyte adhesion-independent manner. ICAM-1 signals to an actomyosin network at the base of canalicular microvilli, thereby controlling the dynamics and size of bile canalicular-like structures. We identified the scaffolding protein EBP50/NHERF1/SLC9A3R1, which connects membrane proteins with the underlying actin cytoskeleton, in the proximity interactome of ICAM-1. EBP50 and ICAM-1 form nano-scale domains that overlap in microvilli, from which ICAM-1 regulates EBP50 nano-organization. Indeed, EBP50 expression is required for ICAM-1-mediated control of BC morphogenesis and actomyosin. Our findings indicate that ICAM-1 regulates the dynamics of epithelial apical membrane domains beyond its role as a heterotypic cell-cell adhesion molecule and reveal potential therapeutic strategies for preserving epithelial architecture during inflammatory stress.


Assuntos
Actomiosina , Molécula 1 de Adesão Intercelular , Animais , Camundongos , Humanos , Actomiosina/metabolismo , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Células Epiteliais/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Citoesqueleto de Actina/metabolismo , Leucócitos/metabolismo , Polaridade Celular
2.
Arterioscler Thromb Vasc Biol ; 43(11): 2213-2222, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37732482

RESUMO

BACKGROUND: Systemic inflammatory diseases, such as sepsis and severe COVID-19, provoke acute respiratory distress syndrome in which the pathological hyperpermeability of the microvasculature, induced by uncontrolled inflammatory stimulation, causes pulmonary edema. Identifying the inflammatory mediators that induce human lung microvascular endothelial cell barrier dysfunction is essential to find the best anti-inflammatory treatments for critically ill acute respiratory distress syndrome patients. METHODS: We have compared the responses of primary human lung microvascular endothelial cells to the main inflammatory mediators involved in cytokine storms induced by sepsis and SARS-CoV2 pulmonary infection and to sera from healthy donors and severely ill patients with sepsis. Endothelial barrier function was measured by electric cell-substrate impedance sensing, quantitative confocal microscopy, and Western blot. RESULTS: The human lung microvascular endothelial cell barrier was completely disrupted by IL (interleukin)-6 conjugated with soluble IL-6R (IL-6 receptor) and by IL-1ß (interleukin-1beta), moderately affected by TNF (tumor necrosis factor)-α and IFN (interferon)-γ and unaffected by other cytokines and chemokines, such as IL-6, IL-8, MCP (monocyte chemoattractant protein)-1 and MCP-3. The inhibition of IL-1 and IL-6R simultaneously, but not separately, significantly reduced endothelial hyperpermeability on exposing human lung microvascular endothelial cells to a cytokine storm consisting of 8 inflammatory mediators or to sera from patients with sepsis. Simultaneous inhibition of IL-1 and JAK (Janus kinase)-STAT (signal transducer and activator of transcription protein), a signaling node downstream IL-6 and IFN-γ, also prevented septic serum-induced endothelial barrier disruption. CONCLUSIONS: These findings strongly suggest a major role for both IL-6 trans-signaling and IL-1ß signaling in the pathological increase in permeability of the human lung microvasculature and reveal combinatorial strategies that enable the gradual control of pulmonary endothelial barrier function in response to a cytokine storm.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Sepse , Humanos , Interleucina-6/metabolismo , Síndrome da Liberação de Citocina , Células Endoteliais/metabolismo , RNA Viral/metabolismo , Pulmão/metabolismo , Interferon gama/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , COVID-19/metabolismo , Sepse/metabolismo , Interleucina-1/metabolismo
3.
Front Psychol ; 14: 1052229, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063545

RESUMO

Objective: This review aimed to systematically examine the characteristics and outcomes of family-based psychosocial interventions offered to adult Latino patients with cancer and their caregivers. Methods: We searched six databases from their inception dates through June 2022. Studies were eligible for inclusion if they (1) targeted both adult Latino patients diagnosed with cancer and their adult caregivers or reported subgroup analyses of Latino patients and caregivers; (2) included family-based psychosocial interventions; (3) used randomized controlled trial (RCT) or quasi-experimental designs; and (4) were published in English, Spanish or Portuguese. Members of our multidisciplinary team assessed the risk of bias in the reviewed studies using the Cochrane Collaboration's Risk of Bias Tool. Results: Our database searches yielded five studies. The studies were conducted in the U.S. and Brazil. Three studies were RCTs, and two used quasi-experimental designs. The sample sizes ranged from 18 to 230 patient-caregiver dyads. These studies culturally adapted the intervention contents and implementation methods and involved bilingual interventionists. The interventions had beneficial effects on multiple aspects of psychosocial outcomes for both patients and caregivers. We also identified methodological limitations in the reviewed studies. Conclusions: Findings from this systematic review help deepen our understanding of family-based psychosocial interventions for Latinos affected by cancer. The small number of psychosocial interventions focused on adult Latino cancer patients and their caregivers is concerning, considering that Latino populations are disproportionally burdened by cancer. Future research needs to design and evaluate culturally-appropriate interventions to support Latino patients and families who cope with cancer. Systematic review registration: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=274993, identifier CRD42021274993.

4.
Rev. bras. ter. intensiva ; 34(3): 351-359, jul.-set. 2022. tab, graf
Artigo em Português | LILACS-Express | LILACS | ID: biblio-1407751

RESUMO

RESUMO Objetivo: Desenvolver um ventilador mecânico invasivo simples, resistente, seguro e eficiente que possa ser utilizado em áreas remotas do mundo ou zonas de guerra, em que a utilidade prática de equipamentos mais sofisticados é limitada por questões de manutenção, disponibilidade de peças, transporte e/ou custo. Métodos: O dispositivo implementa o modo de ventilação mandatória contínua com pressão controlada, complementado por um simples modo assisto-controlado. Pode-se também utilizar a pressão positiva contínua nas vias aéreas. Ao se evitar o fluxo contínuo de oxigênio ou ar, minimiza-se o consumo de gases comprimidos. As taxas respiratórias e as relações de tempo de inspiração e expiração são determinadas eletronicamente. Além disso, conta com um alarme de apneia/falta de energia. Resultados: Os perfis de pressão foram medidos para uma série de condições, sendo considerados ajustáveis dentro de uma margem de erro de ± 2,5cmH2O, e foram considerados bem estáveis dentro dessa variação durante um período de 41 horas. Os parâmetros de tempo do ciclo respiratório foram precisos dentro de alguns pontos percentuais durante o mesmo período. O dispositivo foi testado quanto à durabilidade por um período equivalente a 4 meses. Os testes químicos e biológicos não conseguiram identificar qualquer contaminação do gás por compostos orgânicos voláteis ou micro-organismos. Em comparação com um ventilador bem estabelecido, o teste de ventilação em um animal de grande porte mostrou que este poderia ser ventilado adequadamente durante um período de 60 minutos, sem quaisquer efeitos negativos perceptíveis durante o período subsequente de 24 horas. Conclusão: Este projeto de ventilador pode ser viável após novos testes em animais e aprovação formal pelas autoridades competentes, para aplicação clínica nas circunstâncias atípicas anteriormente mencionadas.


ABSTRACT Objective: To develop a simple, robust, safe and efficient invasive mechanical ventilator that can be used in remote areas of the world or war zones where the practical utility of more sophisticated equipment is limited by considerations of maintainability, availability of parts, transportation and/or cost. Methods: The device implements the pressure-controlled continuous mandatory ventilation mode, complemented by a simple assist-control mode. Continuous positive airway pressure is also possible. The consumption of compressed gases is minimized by avoiding a continuous flow of oxygen or air. Respiratory rates and inspiration/expiration time ratios are electronically determined, and an apnea/power loss alarm is provided. Results: The pressure profiles were measured for a range of conditions and found to be adjustable within a ± 2.5cmH2O error margin and stable well within this range over a 41-hour period. Respiratory cycle timing parameters were precise within a few percentage points over the same period. The device was tested for durability for an equivalent period of four months. Chemical and biological tests failed to identify any contamination of the gas by volatile organic compounds or microorganisms. A ventilation test on a large animal, in comparison with a well established ventilator, showed that the animal could be adequately ventilated over a period of 60 minutes, without any noticeable negative aftereffects during the subsequent 24-hour period. Conclusion: This ventilator design may be viable, after further animal tests and formal approval by the competent authorities, for clinical application in the abovementioned atypical circumstances.

5.
Cell Mol Life Sci ; 79(1): 61, 2022 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-34999972

RESUMO

Apical localization of Intercellular Adhesion Receptor (ICAM)-1 regulates the adhesion and guidance of leukocytes across polarized epithelial barriers. Here, we investigate the molecular mechanisms that determine ICAM-1 localization into apical membrane domains of polarized hepatic epithelial cells, and their effect on lymphocyte-hepatic epithelial cell interaction. We had previously shown that segregation of ICAM-1 into apical membrane domains, which form bile canaliculi and bile ducts in hepatic epithelial cells, requires basolateral-to-apical transcytosis. Searching for protein machinery potentially involved in ICAM-1 polarization we found that the SNARE-associated protein plasmolipin (PLLP) is expressed in the subapical compartment of hepatic epithelial cells in vitro and in vivo. BioID analysis of ICAM-1 revealed proximal interaction between this adhesion receptor and PLLP. ICAM-1 colocalized and interacted with PLLP during the transcytosis of the receptor. PLLP gene editing and silencing increased the basolateral localization and reduced the apical confinement of ICAM-1 without affecting apicobasal polarity of hepatic epithelial cells, indicating that ICAM-1 transcytosis is specifically impaired in the absence of PLLP. Importantly, PLLP depletion was sufficient to increase T-cell adhesion to hepatic epithelial cells. Such an increase depended on the epithelial cell polarity and ICAM-1 expression, showing that the epithelial transcytotic machinery regulates the adhesion of lymphocytes to polarized epithelial cells. Our findings strongly suggest that the polarized intracellular transport of adhesion receptors constitutes a new regulatory layer of the epithelial inflammatory response.


Assuntos
Adesão Celular/fisiologia , Células Epiteliais/metabolismo , Hepatócitos/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Proteínas Proteolipídicas Associadas a Linfócitos e Mielina/metabolismo , Linfócitos T/metabolismo , Linhagem Celular Tumoral , Células Hep G2 , Humanos , Fígado/metabolismo , Proteínas Proteolipídicas Associadas a Linfócitos e Mielina/genética , Transcitose/fisiologia
6.
Cell Mol Life Sci ; 77(11): 2125-2140, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31396656

RESUMO

VE-cadherin plays a central role in controlling endothelial barrier function, which is transiently disrupted by proinflammatory cytokines such as tumor necrosis factor (TNFα). Here we show that human endothelial cells compensate VE-cadherin degradation in response to TNFα by inducing VE-cadherin de novo synthesis. This compensation increases adherens junction turnover but maintains surface VE-cadherin levels constant. NF-κB inhibition strongly reduced VE-cadherin expression and provoked endothelial barrier collapse. Bacterial lipopolysaccharide and TNFα upregulated the transcription factor ETS1, in vivo and in vitro, in an NF-κB dependent manner. ETS1 gene silencing specifically reduced VE-cadherin protein expression in response to TNFα and exacerbated TNFα-induced barrier disruption. We propose that TNFα induces not only the expression of genes involved in increasing permeability to small molecules and immune cells, but also a homeostatic transcriptional program in which NF-κB- and ETS1-regulated VE-cadherin expression prevents the irreversible damage of endothelial barriers.


Assuntos
Antígenos CD/metabolismo , Caderinas/metabolismo , Células Endoteliais/metabolismo , Proteína Proto-Oncogênica c-ets-1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Junções Aderentes/genética , Junções Aderentes/metabolismo , Animais , Antígenos CD/genética , Caderinas/genética , Permeabilidade Capilar , Células Endoteliais/citologia , Inativação Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamação/genética , Inflamação/metabolismo , Camundongos , Proteólise , Proteína Proto-Oncogênica c-ets-1/genética , Regulação para Cima
7.
J Cell Biol ; 213(3): 385-402, 2016 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-27138256

RESUMO

Endothelial barrier dysfunction underlies chronic inflammatory diseases. In searching for new proteins essential to the human endothelial inflammatory response, we have found that the endosomal GTPase RhoB is up-regulated in response to inflammatory cytokines and expressed in the endothelium of some chronically inflamed tissues. We show that although RhoB and the related RhoA and RhoC play additive and redundant roles in various aspects of endothelial barrier function, RhoB specifically inhibits barrier restoration after acute cell contraction by preventing plasma membrane extension. During barrier restoration, RhoB trafficking is induced between vesicles containing RhoB nanoclusters and plasma membrane protrusions. The Rho GTPase Rac1 controls membrane spreading and stabilizes endothelial barriers. We show that RhoB colocalizes with Rac1 in endosomes and inhibits Rac1 activity and trafficking to the cell border during barrier recovery. Inhibition of endosomal trafficking impairs barrier reformation, whereas induction of Rac1 translocation to the plasma membrane accelerates it. Therefore, RhoB-specific regulation of Rac1 trafficking controls endothelial barrier integrity during inflammation.


Assuntos
Células Endoteliais/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteína rhoB de Ligação ao GTP/fisiologia , Células Endoteliais da Veia Umbilical Humana/classificação , Humanos , Imuno-Histoquímica , Mucosa Intestinal/metabolismo , Intestinos/patologia , Transporte Proteico , Fatores de Necrose Tumoral/farmacologia , Proteína rhoB de Ligação ao GTP/metabolismo
8.
PLoS One ; 10(4): e0123714, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25915900

RESUMO

African swine fever virus (ASFV) CD2v protein is believed to be involved in virulence enhancement, viral hemadsorption, and pathogenesis, although the molecular mechanisms of the function of this viral protein are still not fully understood. Here we describe that CD2v localized around viral factories during ASFV infection, suggesting a role in the generation and/or dynamics of these viral structures and hence in disturbing cellular traffic. We show that CD2v targeted the regulatory trans-Golgi network (TGN) protein complex AP-1, a key element in cellular traffic. This interaction was disrupted by brefeldin A even though the location of CD2v around the viral factory remained unchanged. CD2v-AP-1 binding was independent of CD2v glycosylation and occurred on the carboxy-terminal part of CD2v, where a canonical di-Leu motif previously reported to mediate AP-1 binding in eukaryotic cells, was identified. This motif was shown to be functionally interchangeable with the di-Leu motif present in HIV-Nef protein in an AP-1 binding assay. However, we demonstrated that it was not involved either in CD2v cellular distribution or in CD2v-AP-1 binding. Taken together, these findings shed light on CD2v function during ASFV infection by identifying AP-1 as a cellular factor targeted by CD2v and hence elucidate the cellular pathways used by the virus to enhance infectivity.


Assuntos
Complexo 1 de Proteínas Adaptadoras/metabolismo , Vírus da Febre Suína Africana/patogenicidade , Proteínas Virais/metabolismo , Vírus da Febre Suína Africana/metabolismo , Motivos de Aminoácidos , Animais , Sítios de Ligação , Células COS , Chlorocebus aethiops , Macrófagos/virologia , Ligação Proteica , Suínos , Proteínas Virais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA