Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nature ; 546(7659): 533-538, 2017 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-28614297

RESUMO

Conventional two-dimensional differentiation from pluripotency fails to recapitulate cell interactions occurring during organogenesis. Three-dimensional organoids generate complex organ-like tissues; however, it is unclear how heterotypic interactions affect lineage identity. Here we use single-cell RNA sequencing to reconstruct hepatocyte-like lineage progression from pluripotency in two-dimensional culture. We then derive three-dimensional liver bud organoids by reconstituting hepatic, stromal, and endothelial interactions, and deconstruct heterogeneity during liver bud development. We find that liver bud hepatoblasts diverge from the two-dimensional lineage, and express epithelial migration signatures characteristic of organ budding. We benchmark three-dimensional liver buds against fetal and adult human liver single-cell RNA sequencing data, and find a striking correspondence between the three-dimensional liver bud and fetal liver cells. We use a receptor-ligand pairing analysis and a high-throughput inhibitor assay to interrogate signalling in liver buds, and show that vascular endothelial growth factor (VEGF) crosstalk potentiates endothelial network formation and hepatoblast differentiation. Our molecular dissection reveals interlineage communication regulating organoid development, and illuminates previously inaccessible aspects of human liver development.


Assuntos
Comunicação Celular , Diferenciação Celular , Linhagem da Célula , Fígado/citologia , Fígado/embriologia , Organogênese , Técnicas de Cultura de Tecidos/métodos , Idoso , Hipóxia Celular , Movimento Celular , Endotélio/citologia , Células Epiteliais/citologia , Matriz Extracelular/metabolismo , Feminino , Feto/citologia , Hepatócitos/citologia , Humanos , Masculino , Pessoa de Meia-Idade , Organoides/citologia , Células-Tronco Pluripotentes/citologia , Análise de Sequência de RNA , Transdução de Sinais , Análise de Célula Única , Fator A de Crescimento do Endotélio Vascular/metabolismo , Adulto Jovem
2.
J Biomol Screen ; 20(6): 720-8, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25838434

RESUMO

High-content screening of compound libraries poses various challenges in the early steps in drug discovery such as gaining insights into the mode of action of the selected compounds. Here, we addressed these challenges by integrating two biological screens through bioinformatics and computational analysis. We screened a small-molecule library enriched in amphiphilic compounds in a degranulation assay in rat basophilic leukemia 2H3 (RBL-2H3) cells. The same library was rescreened in a high-content image-based endocytosis assay in HeLa cells. This assay was previously applied to a genome-wide RNAi screen that produced quantitative multiparametric phenotypic profiles for genes that directly or indirectly affect endocytosis. By correlating the endocytic profiles of the compounds with the genome-wide siRNA profiles, we identified candidate pathways that may be inhibited by the compounds. Among these, we focused on the Akt pathway and validated its inhibition in HeLa and RBL-2H3 cells. We further showed that the compounds inhibited the translocation of the Akt-PH domain to the plasma membrane. The approach performed here can be used to integrate chemical and functional genomics screens for investigating the mechanism of action of compounds.


Assuntos
Degranulação Celular/efeitos dos fármacos , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Mastócitos/efeitos dos fármacos , Mastócitos/fisiologia , Animais , Linhagem Celular , Endocitose/efeitos dos fármacos , Expressão Gênica , Genes Reporter , Ensaios de Triagem em Larga Escala , Humanos , Fosfoproteínas/metabolismo , Transporte Proteico , Proteínas Recombinantes de Fusão/genética , Bibliotecas de Moléculas Pequenas
3.
Cell Host Microbe ; 13(2): 129-42, 2013 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-23414754

RESUMO

Pharmacological modulators of host-microbial interactions can in principle be identified using high-content screens. However, a severe limitation of this approach is the lack of insights into the mode of action of compounds selected during the primary screen. To overcome this problem, we developed a combined experimental and computational approach. We designed a quantitative multiparametric image-based assay to measure intracellular mycobacteria in primary human macrophages, screened a chemical library containing FDA-approved drugs, and validated three compounds for intracellular killing of M. tuberculosis. By integrating the multiparametric profiles of the chemicals with those of siRNAs from a genome-wide survey on endocytosis, we predicted and experimentally verified that two compounds modulate autophagy, whereas the third accelerates endosomal progression. Our findings demonstrate the value of integrating small molecules and genetic screens for identifying cellular mechanisms modulated by chemicals. Furthermore, selective pharmacological modulation of host trafficking pathways can be applied to intracellular pathogens beyond mycobacteria.


Assuntos
Antibacterianos/farmacologia , Autofagia/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Interferência de RNA , Antibacterianos/química , Transporte Biológico , Contagem de Colônia Microbiana , Biologia Computacional/métodos , Endocitose , Endossomos , Proteínas de Fluorescência Verde/metabolismo , Haloperidol/química , Haloperidol/farmacologia , Células HeLa , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Macrófagos/ultraestrutura , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Mycobacterium tuberculosis/patogenicidade , Nortriptilina/química , Nortriptilina/farmacologia , Fagossomos , Proclorperazina/química , Proclorperazina/farmacologia
4.
Mol Pharmacol ; 63(4): 886-95, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12644590

RESUMO

Activation of endothelial nitric-oxide synthase (eNOS) has been shown to occur through various pathways involving increases in the cytosolic Ca(2+) concentration, activation of the phosphatidylinositol-3' kinase/Akt pathway, as well as regulation by other kinases and by protein-protein interactions. We have recently reported that eNOS, expressed in an inducible HeLa Tet-off cell line, is activated by tumor necrosis factor-alpha (TNF-alpha) in a previously undescribed pathway that involves the lipid messenger ceramide. We have now characterized this pathway. We report here that eNOS activation in response to TNF-alpha correlated with phosphorylation of Akt at Ser 473 and of eNOS itself at Ser 1179. Akt and eNOS phosphorylation, as well as eNOS activation, were blocked by inhibitors of both phosphatidylinositol-3' kinase and neutral sphingomyelinase. In contrast, although acid sphingomyelinase was also stimulated by TNF-alpha, its inhibition was without effect. The activation of neutral sphingomyelinase triggered by TNF-alpha was insensitive to phosphatidylinositol-3' kinase inhibitors. Taken together, these results indicate that eNOS activation by TNF-alpha occurs through sequential activation of neutral sphingomyelinase and of the phosphatidylinositol-3' kinase/Akt pathway. The time course of eNOS activation induced through this pathway was markedly different from that triggered by ATP and epidermal growth factor, which activate eNOS through an increase in intracellular Ca(2+) concentration and through a sphingomyelinase-independent stimulation of the phosphatidylinositol-3' kinase/Akt pathway, respectively. The novel pathway of activation of eNOS described here may have broad biological relevance because neutral sphingomyelinase is activated not only by TNF-alpha but also by a variety of other physiological and pathological stimuli.


Assuntos
Óxido Nítrico Sintase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Células Cultivadas , Ativação Enzimática , Células HeLa , Humanos , Óxido Nítrico Sintase Tipo III , Proteínas Proto-Oncogênicas c-akt
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA