Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36430552

RESUMO

Tumor Treating Fields (TTFields) are electric fields that exert physical forces to disrupt cellular processes critical for cancer cell viability and tumor progression. TTFields induce anti-mitotic effects through the disruption of the mitotic spindle and abnormal chromosome segregation, which trigger several forms of cell death, including immunogenic cell death (ICD). The efficacy of TTFields concomitant with anti-programmed death-1 (anti-PD-1) treatment was previously shown in vivo and is currently under clinical investigation. Here, the potential of TTFields concomitant with anti- PD-1/anti-cytotoxic T-lymphocyte-associated protein 4 (anti-CTLA-4) or anti-programmed death-ligand 1 (anti-PD-L1) immune checkpoint inhibitors (ICI) to improve therapeutic efficacy was examined in lung tumor-bearing mice. Increased circulating levels of high mobility group box 1 protein (HMGB1) and elevated intratumoral levels of phosphorylated eukaryotic translation initiation factor 2α (p-eIF2α) were found in the TTFields-treated mice, indicative of ICD induction. The concomitant application of TTFields and ICI led to a significant decrease in tumor volume as compared to all other groups. In addition, significant increases in the number of tumor-infiltrating immune cells, specifically cytotoxic T-cells, were observed in the TTFields plus anti-PD-1/anti-CTLA-4 or anti-PD-L1 groups. Correspondingly, cytotoxic T-cells isolated from these tumors showed higher levels of IFN-γ production. Collectively, these results suggest that TTFields have an immunoactivating role that may be leveraged for concomitant treatment with ICI to achieve better tumor control by enhancing antitumor immunity.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Camundongos , Animais , Carcinoma Pulmonar de Células não Pequenas/patologia , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Sobrevivência Celular/fisiologia , Fuso Acromático
2.
Cell Rep ; 27(3): 730-736.e3, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30995472

RESUMO

Gestation is accompanied by alterations in the microbial repertoire; however, the mechanisms driving these changes are unknown. Here, we demonstrate a dramatic shift in the gut microbial composition of women and mice during late pregnancy, including an increase in the relative abundance of Bifidobacterium. Using in-vivo-transplanted pellets, we found that progesterone, the principal gestation hormone, affects the microbial community. The effect of progesterone on the richness of several bacteria species, including Bifidobacterium, was also demonstrated in vitro, indicating a direct effect. Altogether, our results delineate a model in which progesterone promotes Bifidobacterium growth during late pregnancy.


Assuntos
Bifidobacterium/crescimento & desenvolvimento , Microbioma Gastrointestinal/efeitos dos fármacos , Progesterona/farmacologia , Adulto , Animais , Bifidobacterium/genética , Bifidobacterium/isolamento & purificação , Análise Discriminante , Fezes/microbiologia , Feminino , Humanos , Camundongos , Efeito Placebo , Gravidez , Terceiro Trimestre da Gravidez , Análise de Componente Principal , Progesterona/química , RNA Ribossômico 16S/metabolismo , Adulto Jovem
3.
Nat Commun ; 10(1): 605, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30723199

RESUMO

Nuclear envelopathies comprise a heterogeneous group of diseases caused by mutations in genes encoding nuclear envelope proteins. Mutations affecting lamina-associated polypeptide 1 (LAP1) result in two discrete phenotypes of muscular dystrophy and progressive dystonia with cerebellar atrophy. We report 7 patients presenting at birth with severe progressive neurological impairment, bilateral cataract, growth retardation and early lethality. All the patients are homozygous for a nonsense mutation in the TOR1AIP1 gene resulting in the loss of both protein isoforms LAP1B and LAP1C. Patient-derived fibroblasts exhibit changes in nuclear envelope morphology and large nuclear-spanning channels containing trapped cytoplasmic organelles. Decreased and inefficient cellular motility is also observed in these fibroblasts. Our study describes the complete absence of both major human LAP1 isoforms, underscoring their crucial role in early development and organogenesis. LAP1-associated defects may thus comprise a broad clinical spectrum depending on the availability of both isoforms in the nuclear envelope throughout life.


Assuntos
Anormalidades Múltiplas/genética , Predisposição Genética para Doença/genética , Proteínas de Membrana/genética , Mutação , Membrana Nuclear/genética , Proteínas Nucleares/genética , Anormalidades Múltiplas/metabolismo , Sequência de Bases , Criança , Pré-Escolar , Proteínas do Citoesqueleto , Análise Mutacional de DNA , Evolução Fatal , Feminino , Humanos , Masculino , Proteínas de Membrana/metabolismo , Microscopia Eletrônica de Transmissão , Membrana Nuclear/metabolismo , Membrana Nuclear/ultraestrutura , Proteínas Nucleares/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA