Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Nucl Med ; 40(2): e104-10, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25551623

RESUMO

Among the most interesting applications of ferromagnetic nanoparticles (NPs) in medicine is the potential for localizing pharmacologically or radioactively tagged agents directly to selected tissues selected by an adjustable external magnetic field. This concept is demonstrated by the application external magnetic field on IV Tc-labeled aminosilane-coated iron oxide NPs in a rat model. In a model comparing a rat with a 0.3-T magnet over a hind paw versus a rat without a magnet, a static acquisition at 45 minutes showed that 27% of the administered radioactivity was in the area subtended by the magnet, whereas the liver displays a percentage of binding of 14% in the presence of the magnet and of 16% in the absence of an external magnetic field. These preliminary results suggest that the application of an external magnetic field may be a viable route for the development of methods for the confinement of magnetic NPs labeled with radioactive isotopes targeted for predetermined sites of the body.


Assuntos
Campos Magnéticos , Nanopartículas de Magnetita , Compostos Radiofarmacêuticos/farmacocinética , Tecnécio/farmacocinética , Animais , Fígado/efeitos dos fármacos , Masculino , Compostos Radiofarmacêuticos/administração & dosagem , Ratos , Silanos/química , Tecnécio/administração & dosagem , Distribuição Tecidual
2.
Biomatter ; 42014.
Artigo em Inglês | MEDLINE | ID: mdl-25050758

RESUMO

Magnetic force microscopy (MFM) is an atomic force microscopy (AFM) based technique in which an AFM tip with a magnetic coating is used to probe local magnetic fields with the typical AFM spatial resolution, thus allowing one to acquire images reflecting the local magnetic properties of the samples at the nanoscale. Being a well established tool for the characterization of magnetic recording media, superconductors and magnetic nanomaterials, MFM is finding constantly increasing application in the study of magnetic properties of materials and systems of biological and biomedical interest. After reviewing these latter applications, three case studies are presented in which MFM is used to characterize: (i) magnetoferritin synthesized using apoferritin as molecular reactor; (ii) magnetic nanoparticles loaded niosomes to be used as nanocarriers for drug delivery; (iii) leukemic cells labeled using folic acid-coated core-shell superparamagnetic nanoparticles in order to exploit the presence of folate receptors on the cell membrane surface. In these examples, MFM data are quantitatively analyzed evidencing the limits of the simple analytical models currently used. Provided that suitable models are used to simulate the MFM response, MFM can be used to evaluate the magnetic momentum of the core of magnetoferritin, the iron entrapment efficiency in single vesicles, or the uptake of magnetic nanoparticles into cells.


Assuntos
Materiais Revestidos Biocompatíveis/química , Microscopia de Força Atômica/métodos , Apoferritinas/química , Linhagem Celular Tumoral , Portadores de Fármacos/química , Ácido Fólico/química , Humanos , Ferro/química , Campos Magnéticos , Modelos Teóricos , Nanopartículas/química , Óxidos/química , Tamanho da Partícula , Polietilenoglicóis/química , Polilisina/química , Propriedades de Superfície
3.
J Biomed Mater Res A ; 91(2): 370-7, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18980225

RESUMO

Culturing of skeletal muscle cells on conductive surfaces is required to develop electronic device-muscle junctions for tissue engineering and medical applications. We characterized from a molecular and morphological point of view myogenic cells cultured on gold and on cysteamine-coated gold, as compared to the standard plastic for cell culture. Our results show that cell proliferation and survival are comparable between cells grown on either of the gold surface or plastic. The majority of the cells cultured on gold surfaces retain the ability to respond to differentiation cues, as shown by nuclear translocation of myogenin. Following terminal differentiation, the myotubes cultured on cysteamine-coated gold resemble myotube cultures obtained on plastic for the size and orientation of the myotube bundles retaining most of myosin expression; on the contrary, the myotube cultures on gold show a clumped morphology, likely due to repulsive cell-substratum interaction resulting in aberrant differentiation. On the basis of the aforementioned evidences, the culture of muscle cells on cysteamine-coated gold represents an advance with respect to previously reported substrata. The cysteamine self-assembled monolayer coating is a simple approach to accomplish cultures of myotubes in unprecedented tight proximity to conductive surfaces.


Assuntos
Cisteamina/química , Ouro/química , Fibras Musculares Esqueléticas/citologia , Engenharia Tecidual/métodos , Animais , Adesão Celular , Diferenciação Celular , Linhagem Celular , Fibras Musculares Esqueléticas/metabolismo , Miogenina/metabolismo , Propriedades de Superfície
4.
FASEB J ; 17(14): 2127-9, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14500554

RESUMO

The major protein component (apoB-100) of low-density lipoprotein (LDL) is known as a multipotential molecule the several functional regions of which can all be affected by key structural modifications driven by specific domains. Based on our previous report on structural and conformational modifications of apoB-100 in the presence of 17-beta-estradiol (E2), we characterized the interaction between E2 and the apoB-100 and further explored the induced alterations in terms of the structural arrangement of the whole LDL particle. We report evidence for the existence on apoB-100 of a single specific and saturable binding site for E2, the occupancy of which modifies the overall structure of the protein, inducing an increase in the alpha-helix fraction. As a consequence, the structure of the LDL particle is deeply perturbed, with a change in the arrangement of both the outer shell and lipid core and an overall volume shrinkage. The evidence of a regulation of apoB-100 structure by a physiological ligand opens new perspectives in the study of the biological addressing of the LDL particle and suggests a novel rationale in the search for mechanisms underlying the beneficial role of E2 in decreasing the risk of early lesions in atherosclerosis.


Assuntos
Apolipoproteínas B/química , Apolipoproteínas B/metabolismo , Estradiol/metabolismo , Apolipoproteína B-100 , Sítios de Ligação , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA