Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(1): 113644, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38180837

RESUMO

Extensive remodeling of the female mammary epithelium during development and pregnancy has been linked to cancer susceptibility. The faithful response of mammary epithelial cells (MECs) to hormone signaling is key to avoiding breast cancer development. Here, we show that lactogenic differentiation of murine MECs requires silencing of genes encoding ribosomal RNA (rRNA) by the antisense transcript PAPAS. Accordingly, knockdown of PAPAS derepresses rRNA genes, attenuates the response to lactogenic hormones, and induces malignant transformation. Restoring PAPAS levels in breast cancer cells reduces tumorigenicity and lung invasion and activates many interferon-regulated genes previously linked to metastasis suppression. Mechanistically, PAPAS transcription depends on R-loop formation at the 3' end of rRNA genes, which is repressed by RNase H1 and replication protein A (RPA) overexpression in breast cancer cells. Depletion of PAPAS and upregulation of RNase H1 and RPA in human breast cancer underpin the clinical relevance of our findings.


Assuntos
Neoplasias da Mama , Glândulas Mamárias Animais , Gravidez , Feminino , Camundongos , Animais , Humanos , Glândulas Mamárias Animais/metabolismo , Mama/metabolismo , Diferenciação Celular , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Transformação Celular Neoplásica/metabolismo , Células Epiteliais/metabolismo
2.
Placenta ; 88: 20-27, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31586768

RESUMO

INTRODUCTION: Leukemia Inhibitory Factor (LIF) regulates behavior of trophoblast cells and their interaction with immune and endothelial cells. In vitro, trophoblast cell response to LIF may vary depending on the cell model. Reported differences in the miRNA profile of trophoblastic cells may be responsible for these observations. Therefore, miRNA expression was investigated in four trophoblastic cell lines under LIF stimulation followed by in silico analysis of altered miRNAs and their associated pathways. METHODS: Low density TaqMan miRNA assays were used to quantify levels of 762 mature miRNAs under LIF stimulation in three choriocarcinoma-derived (JEG-3, ACH-3P and AC1-M59) and a trophoblast immortalized (HTR-8/SVneo) cell lines. Expression of selected miRNAs was confirmed in primary trophoblast cells and cell lines by qPCR. Targets and associated pathways of the differentially expressed miRNAs were inferred from the miRTarBase followed by a KEGG Pathway Enrichment Analysis. HTR-8/SVneo and JEG-3 cells were transfected with miR-21-mimics and expression of miR-21 targets was assessed by qPCR. RESULTS: A similar number of miRNAs changed in each tested cell line upon LIF stimulation, however, low coincidence of individual miRNA species was observed and occurred more often among choriocarcinoma-derived cells (complete data set at http://www.ncbi.nlm.nih.gov/geo/ under GEO accession number GSE130489). Altered miRNAs were categorized into pathways involved in human diseases, cellular processes and signal transduction. Six cascades were identified as significantly enriched, including JAK/STAT and TGFB-SMAD. Upregulation of miR-21-3p was validated in all cell lines and primary cells and STAT3 was confirmed as its target. DISCUSSION: Dissimilar miRNA responses may be involved in differences of LIF effects on trophoblastic cell lines.


Assuntos
Fator Inibidor de Leucemia/fisiologia , MicroRNAs/metabolismo , Trofoblastos/fisiologia , Linhagem Celular , Humanos , Fator de Transcrição STAT3/metabolismo
3.
Sci Rep ; 6: 34589, 2016 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-27713552

RESUMO

The unprecedented outbreak of Ebola in West Africa resulted in over 28,000 cases and 11,000 deaths, underlining the need for a better understanding of the biology of this highly pathogenic virus to develop specific counter strategies. Two filoviruses, the Ebola and Marburg viruses, result in a severe and often fatal infection in humans. However, bats are natural hosts and survive filovirus infections without obvious symptoms. The molecular basis of this striking difference in the response to filovirus infections is not well understood. We report a systematic overview of differentially expressed genes, activity motifs and pathways in human and bat cells infected with the Ebola and Marburg viruses, and we demonstrate that the replication of filoviruses is more rapid in human cells than in bat cells. We also found that the most strongly regulated genes upon filovirus infection are chemokine ligands and transcription factors. We observed a strong induction of the JAK/STAT pathway, of several genes encoding inhibitors of MAP kinases (DUSP genes) and of PPP1R15A, which is involved in ER stress-induced cell death. We used comparative transcriptomics to provide a data resource that can be used to identify cellular responses that might allow bats to survive filovirus infections.


Assuntos
Ebolavirus/metabolismo , Regulação da Expressão Gênica , Doença pelo Vírus Ebola/metabolismo , Doença do Vírus de Marburg/metabolismo , Marburgvirus/metabolismo , Transdução de Sinais , Transcrição Gênica , Animais , Linhagem Celular Tumoral , Quirópteros , Humanos
4.
Nucleic Acids Res ; 40(22): 11659-72, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23034808

RESUMO

SR1 is a dual-function sRNA that acts as a base-pairing regulatory RNA on the ahrC mRNA and as a peptide-encoding mRNA on the gapA operon. The SR1-encoded peptide SR1P binds GapA thereby stabilizing gapA mRNA. Under glycolytic conditions, SR1 transcription is repressed by CcpN and CcpA. A computer-based search identified 23 SR1 homologues in Bacillus, Geobacillus, Anoxybacillus and Brevibacillus species. All homologues share a high structural identity with Bacillus subtilis SR1, and the encoded SR1P peptides are highly similar. In the Bacillus cereus group, the sr1p region is present in triplicate or duplicate resulting in longer SR1 species. In all cases, sr1 expression is under control of CcpN, and transcriptional lacZ fusions of nine examined SR1 homologues were sensitive to glucose. Two homologues showed an additional glucose-independent repression by CcpN and an unknown factor. A total of 10 out of 11 tested SR1P homologues complemented a B. subtilis Δsr1 strain in their ability to stabilize gapA mRNA, but only five of them bound GapA tightly. In vitro binding assays with six SR1/ahrC pairs suggest that-despite divergent primary sequences-the base-pairing function is also preserved. In summary, SR1 is an sRNA with two functions that have been conserved over ≈1 billion years.


Assuntos
Bacillus subtilis/genética , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Cisteína/fisiologia , Regulação Bacteriana da Expressão Gênica , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Peptídeos/química , Filogenia , Regiões Promotoras Genéticas , Estabilidade de RNA , RNA Bacteriano/química , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/química , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Sintenia , Transativadores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA