Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Toxins (Basel) ; 16(1)2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38251252

RESUMO

Pertussis toxin (PT) is a bacterial AB5-toxin produced by Bordetella pertussis and a major molecular determinant of pertussis, also known as whooping cough, a highly contagious respiratory disease. In this study, we investigate the protective effects of the chaperonin TRiC/CCT inhibitor, HSF1A, against PT-induced cell intoxication. TRiC/CCT is a chaperonin complex that facilitates the correct folding of proteins, preventing misfolding and aggregation, and maintaining cellular protein homeostasis. Previous research has demonstrated the significance of TRiC/CCT in the functionality of the Clostridioides difficile TcdB AB-toxin. Our findings reveal that HSF1A effectively reduces the levels of ADP-ribosylated Gαi, the specific substrate of PT, in PT-treated cells, without interfering with enzyme activity in vitro or the cellular binding of PT. Additionally, our study uncovers a novel interaction between PTS1 and the chaperonin complex subunit CCT5, which correlates with reduced PTS1 signaling in cells upon HSF1A treatment. Importantly, HSF1A mitigates the adverse effects of PT on cAMP signaling in cellular systems. These results provide valuable insights into the mechanisms of PT uptake and suggest a promising starting point for the development of innovative therapeutic strategies to counteract pertussis toxin-mediated pathogenicity.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Toxina Pertussis , Toxinas Bacterianas/toxicidade , Citosol , Anticorpos Antibacterianos , Chaperonina com TCP-1
2.
J Am Chem Soc ; 145(10): 5960-5969, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36857421

RESUMO

We present a versatile method for the preparation of hyperpolarized [1-13C]fumarate as a contrast agent for preclinical in vivo MRI, using parahydrogen-induced polarization (PHIP). To benchmark this process, we compared a prototype PHIP polarizer to a state-of-the-art dissolution dynamic nuclear polarization (d-DNP) system. We found comparable polarization, volume, and concentration levels of the prepared solutions, while the preparation effort is significantly lower for the PHIP process, which can provide a preclinical dose every 10 min, opposed to around 90 min for d-DNP systems. With our approach, a 100 mM [1-13C]-fumarate solution of volumes up to 3 mL with 13-20% 13C-hyperpolarization after purification can be produced. The purified solution has a physiological pH, while the catalyst, the reaction side products, and the precursor material concentrations are reduced to nontoxic levels, as confirmed in a panel of cytotoxicity studies. The in vivo usage of the hyperpolarized fumarate as a perfusion agent in healthy mice and the metabolic conversion of fumarate to malate in tumor-bearing mice developing regions with necrotic cell death is demonstrated. Furthermore, we present a one-step synthesis to produce the 13C-labeled precursor for the hydrogenation reaction with high yield, starting from 13CO2 as a cost-effective source for 13C-labeled compounds.


Assuntos
Fumaratos , Imageamento por Ressonância Magnética , Camundongos , Animais , Espectroscopia de Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Hidrogenação , Meios de Contraste
3.
Toxins (Basel) ; 14(10)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36287979

RESUMO

The protein toxin C3bot from Clostridium botulinum is a mono-ADP-ribosyltransferase that selectively intoxicates monocyte-derived cells such as macrophages, osteoclasts, and dendritic cells (DCs) by cytosolic modification of Rho-A, -B, and -C. Here, we investigated the application of C3bot as well as its non-toxic variant C3botE174Q as transporters for selective delivery of cargo molecules into macrophages and DCs. C3bot and C3botE174Q facilitated the uptake of eGFP into early endosomes of human-monocyte-derived macrophages, as revealed by stimulated emission depletion (STED) super-resolution microscopy. The fusion of the cargo model peptide eGFP neither affected the cell-type selectivity (enhanced uptake into human macrophages ex vivo compared to lymphocytes) nor the cytosolic release of C3bot. Moreover, by cell fractionation, we demonstrated that C3bot and C3botE174Q strongly enhanced the cytosolic release of functional eGFP. Subsequently, a modular system was created on the basis of C3botE174Q for covalent linkage of cargos via thiol-maleimide click chemistry. The functionality of this system was proven by loading small molecule fluorophores or an established reporter enzyme and investigating the cellular uptake and cytosolic release of cargo. Taken together, non-toxic C3botE174Q is a promising candidate for the cell-type-selective delivery of small molecules, peptides, and proteins into the cytosol of macrophages and DCs.


Assuntos
Toxinas Botulínicas , Clostridium botulinum , Humanos , Toxinas Botulínicas/química , Clostridium botulinum/metabolismo , Macrófagos/metabolismo , ADP Ribose Transferases/metabolismo , Maleimidas/metabolismo , Compostos de Sulfidrila/metabolismo , Células Dendríticas/metabolismo
4.
Front Pharmacol ; 12: 770283, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34733166

RESUMO

Translating the CRISPR/Cas9 genome editing technology into clinics is still hampered by rather unspecific, unsafe and/or inconvenient approaches for the delivery of its main components - the Cas9 endonuclease and a guide RNA - into cells. Here, we describe the development of a novel transient and non-viral Cas9 delivery strategy based on the translocation machinery of the Bacillus anthracis anthrax toxin, PA (protective antigen). We show that Cas9 variants fused to the N-terminus of the lethal factor or to a hexahistidine tag are shuttled through channels formed by PA into the cytosol of human cells. As proof-of-principle, we applied our new approach, denoted as CRISPA, to knock out lipolysis-stimulated lipoprotein receptor (LSR) in the human colon cancer cell line HCT116 and green-fluorescent protein (GFP) in human embryonic kidney 293T cells stably expressing GFP. Notably, we confirmed that the transporter PA can be adapted to recognize specific host cell-surface receptor proteins and may be optimized for cell type-selective delivery of Cas9. Altogether, CRISPA provides a novel, transient and non-viral way to deliver Cas9 into specific cells. Thus, this system is an additional step towards safe translation of the CRISPR/Cas9 technology into clinics.

5.
Nano Lett ; 21(9): 3780-3788, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33881327

RESUMO

Temperature is an essential parameter in all biological systems, but information about the actual temperature in living cells is limited. Especially, in photothermal therapy, local intracellular temperature changes induce cell death but the local temperature gradients are not known. Highly sensitive nanothermometers would be required to measure and report local temperature changes independent of the intracellular environment, including pH or ions. Fluorescent nanodiamonds (ND) enable temperature sensing at the nanoscale independent of external conditions. Herein, we prepare ND nanothermometers coated with a nanogel shell and the photothermal agent indocyanine green serves as a heat generator and sensor. Upon irradiation, programmed cell death was induced in cancer cells with high spatial control. In parallel, the increase in local temperature was recorded by the ND nanothermometers. This approach represents a great step forward to record local temperature changes in different cellular environments inside cells and correlate these with thermal biology.


Assuntos
Nanodiamantes , Calefação , Temperatura Alta , Medicina de Precisão , Temperatura
6.
Toxins (Basel) ; 13(5)2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33925951

RESUMO

AB5 protein toxins are produced by certain bacterial pathogens and are composed of an enzymatically active A-subunit and a B-subunit pentamer, the latter being responsible for cell receptor recognition, cellular uptake, and transport of the A-subunit into the cytosol of eukaryotic target cells. Two members of the AB5 toxin family were described in Shiga toxin-producing Escherichia coli (STEC), namely Shiga toxin (Stx) and subtilase cytotoxin (SubAB). The functional paradigm of AB toxins includes the B-subunit being mandatory for the uptake of the toxin into its target cells. Recent studies have shown that this paradigm cannot be maintained for SubAB, since SubA alone was demonstrated to intoxicate human epithelial cells in vitro. In the current study, we raised the hypothesis that this may also be true for the A-subunit of the most clinically relevant Stx-variant, Stx2a. After separate expression and purification, the recombinant Stx2a subunits StxA2a-His and StxB2a-His were applied either alone or in combination in a 1:5 molar ratio to Vero B4, HeLa, and HCT-116 cells. For all cell lines, a cytotoxic effect of StxA2a-His alone was detected. Competition experiments with Stx and SubAB subunits in combination revealed that the intoxication of StxA2a-His was reduced by addition of SubB1-His. This study showed that the enzymatic subunit StxA2a alone was active on different cells and might therefore play a yet unknown role in STEC disease development.


Assuntos
Toxina Shiga/toxicidade , Animais , Chlorocebus aethiops , Células Epiteliais/efeitos dos fármacos , Células HCT116/efeitos dos fármacos , Células HeLa/efeitos dos fármacos , Humanos , Proteínas Recombinantes , Toxina Shiga/química , Toxina Shiga/isolamento & purificação , Toxina Shiga II , Células Vero/efeitos dos fármacos
7.
Sci Rep ; 11(1): 5429, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33686161

RESUMO

Whooping cough is caused by Bordetella pertussis that releases pertussis toxin (PT) which comprises enzyme A-subunit PTS1 and binding/transport B-subunit. After receptor-mediated endocytosis, PT reaches the endoplasmic reticulum from where unfolded PTS1 is transported to the cytosol. PTS1 ADP-ribosylates G-protein α-subunits resulting in increased cAMP signaling. Here, a role of target cell chaperones Hsp90, Hsp70, cyclophilins and FK506-binding proteins for cytosolic PTS1-uptake is demonstrated. PTS1 specifically and directly interacts with chaperones in vitro and in cells. Specific pharmacological chaperone inhibition protects CHO-K1, human primary airway basal cells and a fully differentiated airway epithelium from PT-intoxication by reducing intracellular PTS1-amounts without affecting cell binding or enzyme activity. PT is internalized by human airway epithelium secretory but not ciliated cells and leads to increase of apical surface liquid. Cyclophilin-inhibitors reduced leukocytosis in infant mouse model of pertussis, indicating their promising potential for developing novel therapeutic strategies against whooping cough.


Assuntos
Bordetella pertussis/enzimologia , Sistemas de Liberação de Medicamentos , Inibidores Enzimáticos/farmacologia , Células Epiteliais/metabolismo , Leucocitose , Chaperonas Moleculares , Toxina Pertussis/toxicidade , Animais , Bordetella pertussis/metabolismo , Bordetella pertussis/patogenicidade , Células CHO , Cricetulus , Células Epiteliais/microbiologia , Células HEK293 , Humanos , Leucocitose/induzido quimicamente , Leucocitose/tratamento farmacológico , Leucocitose/metabolismo , Camundongos , Chaperonas Moleculares/antagonistas & inibidores , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo
8.
Biochim Biophys Acta Biomembr ; 1863(6): 183603, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33689753

RESUMO

Clostridioides (C.) difficile is clinically highly relevant and produces several AB-type protein toxins, which are the causative agents for C. difficile-associated diarrhea and pseudomembranous colitis. Treatment with antibiotics can lead to C. difficile overgrowth in the gut of patients due to the disturbed microbiota. C. difficile releases large Rho/Ras-GTPase glucosylating toxins TcdA and TcdB, which are considered as the major virulence factors for C. difficile-associated diseases. In addition to TcdA and TcdB, C. difficile strains isolated from severe cases of colitis produce a third toxin called CDT. CDT is a member of the family of clostridial binary actin ADP-ribosylating toxins and consists of two separate protein components. The B-component, CDTb, binds to the receptor and forms a complex with and facilitates transport and translocation of the enzymatically active A-component, CDTa, into the cytosol of target cells by forming trans-membrane pores through which CDTa translocates. In the cytosol, CDTa ADP-ribosylates G-actin causing depolymerization of the actin cytoskeleton and, eventually, cell death. In the present study, we report that CDTb exhibits a cytotoxic effect in the absence of CDTa. We show that CDTb causes cell rounding and impairs cell viability and the epithelial integrity of CaCo-2 monolayers in the absence of CDTa. CDTb-induced cell rounding depended on the presence of LSR, the specific cellular receptor of CDT. The isolated receptor-binding domain of CDTb was not sufficient to cause cell rounding. CDTb-induced cell rounding was inhibited by enzymatically inactive CDTa or a pore-blocker, implying that CDTb pores in cytoplasmic membranes contribute to cytotoxicity.


Assuntos
ADP Ribose Transferases/farmacologia , Proteínas de Bactérias/farmacologia , Clostridioides difficile/metabolismo , ADP Ribose Transferases/química , ADP Ribose Transferases/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Humanos , Células Vero
9.
Arch Toxicol ; 95(3): 975-983, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33483759

RESUMO

The subtilase cytotoxin (SubAB) is secreted by certain Shiga toxin-producing Escherichia coli (STEC) strains and is composed of the enzymatically active subunit SubA and the pentameric binding/transport subunit SubB. We previously demonstrated that SubA (10 µg/ml), in the absence of SubB, binds and intoxicates the human cervix cancer-derived epithelial cell line HeLa. However, the cellular and molecular mechanisms underlying the cytotoxic activity of SubA in the absence of SubB remained unclear. In the present study, the cytotoxic effects mediated by SubA alone were investigated in more detail in HeLa cells and the human colon cancer cell line HCT116. We found that in the absence of SubB, SubA (10 µg/ml) is internalized into the endoplasmic reticulum (ER), where it cleaves the chaperone GRP78, an already known substrate for SubA after its canonical uptake into cells via SubB. The autonomous cellular uptake of SubA and subsequent cleavage of GRP78 in cells is prevented by treatment of cells with 10 µM brefeldin A, which inhibits the transport of protein toxins into the ER. In addition, by analyzing the SubA mutant SubAΔC344, we identified the C-terminal SEEL motif as an ER-targeting signal. Conclusively, our results strongly suggest that SubA alone shares the same intracellular transport route and cytotoxic activity as the SubAB holotoxin.


Assuntos
Proteínas de Escherichia coli/metabolismo , Glicosídeos/metabolismo , Escherichia coli Shiga Toxigênica/metabolismo , Subtilisinas/metabolismo , Triterpenos/metabolismo , Transporte Biológico , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Chaperona BiP do Retículo Endoplasmático , Proteínas de Escherichia coli/farmacologia , Feminino , Glicosídeos/farmacologia , Células HCT116 , Células HeLa , Proteínas de Choque Térmico/metabolismo , Humanos , Subtilisinas/farmacologia , Triterpenos/farmacologia , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/patologia
10.
Macromol Rapid Commun ; 41(22): e2000418, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33047416

RESUMO

In the development and optimization of imaging methods, photoacoustic imaging (PAI) has become a powerful tool for preclinical biomedical diagnosis and detection of cancer. PAI probes can improve contrast and help identify pathogenic tissue. Such contrast agents must meet several requirements: they need to be biocompatible, and absorb strongly in the near-infrared (NIR) range, while relaxing the photoexcited state thermally and not radiatively. In this work, polymer nanoparticles are produced with croconaine as a monomer unit. Small molecular croconaine dyes are known to act as efficient pigments, which do not show photoluminescence. Here, for the first time croconaine copolymer nanoparticles are produced from croconic acid and a range of aromatic diamines. Following a dispersion polymerization protocol, this approach yields monodisperse particles of adjustable size. All synthesized polymers exhibit broad absorption within the NIR spectrum and therefore represent suitable candidates as contrast agents for PAI. The optical properties of these polymer particles are discussed with respect to the relation between particle size and outstanding photoacoustic performance. Biocompatibility of the polymer particles is demonstrated in cell viability experiments.


Assuntos
Nanopartículas , Técnicas Fotoacústicas , Meios de Contraste , Diagnóstico por Imagem , Polímeros
11.
Int J Mol Sci ; 21(9)2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32384736

RESUMO

Some highly metastatic types of breast cancer show decreased intracellular levels of the tumor suppressor protein NME1, also known as nm23-H1 or nucleoside diphosphate kinase A (NDPK-A), which decreases cancer cell motility and metastasis. Since its activity is directly correlated with the overall outcome in patients, increasing the cytosolic levels of NDPK-A/NME1 in such cancer cells should represent an attractive starting point for novel therapeutic approaches to reduce tumor cell motility and decrease metastasis. Here, we established the Bacillus anthracis protein toxins' transport component PA63 as transporter for the delivery of His-tagged human NDPK-A into the cytosol of cultured cells including human MDA-MB-231 breast cancer cells. The specifically delivered His6-tagged NDPK-A was detected in MDA-MB-231 cells via Western blotting and immunofluorescence microscopy. The PA63-mediated delivery of His6-NDPK-A resulted in reduced migration of MDA-MB-231 cells, as determined by a wound-healing assay. In conclusion, PA63 serves for the transport of the tumor metastasis suppressor NDPK-A/NME1 into the cytosol of human breast cancer cells in vitro, which reduced the migratory activity of these cells. This approach might lead to development of novel therapeutic options.


Assuntos
Antígenos de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Neoplasias da Mama/metabolismo , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Citosol/metabolismo , Portadores de Fármacos/metabolismo , Feminino , Humanos , Nucleosídeo NM23 Difosfato Quinases/administração & dosagem , Proteínas Recombinantes/metabolismo
12.
Adv Healthc Mater ; 8(17): e1900665, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31318180

RESUMO

The targeted pharmacological modulation of polymorphonuclear leukocytes (PMNs) is of major medical interest. These innate immune cells play a central role in the defense against pathogenic microorganisms. However, their excessive chemotactic recruitment into tissues after traumatic injury is detrimental due to local and systemic inflammation. Rho-GTPases, being the master regulators of the actin cytoskeleton, regulate migration and chemotaxis of PMNs, are attractive pharmacological targets. Herein, supramolecular protein complexes are assembled in a "mix-and-match" approach containing the specific Rho-inhibiting clostridial C3 enzyme and three PMN-binding peptides using an avidin platform. Selective delivery of the C3 Rho-inhibitor with these complexes into the cytosol of human neutrophil-like NB-4 cells and primary human PMNs ex vivo is demonstrated, where they catalyze the adenosine diphosphate (ADP) ribosylation of Rho and induce a characteristic change in cell morphology. Notably, the complexes do not deliver C3 enzyme into human lung epithelial cells, A549 lung cancer cells, and immortalized human alveolar epithelial cells (hAELVi), demonstrating their cell type-selectivity. The supramolecular complexes represent attractive molecular tools to decipher the role of PMNs in infection and inflammation or for the development of novel therapeutic approaches for diseases that are associated with hyperactivity and reactivity of PMNs such as post-traumatic injury.


Assuntos
Neutrófilos/metabolismo , Toxinas Biológicas/farmacologia , ADP Ribose Transferases/metabolismo , Avidina/metabolismo , Biotinilação , Toxinas Botulínicas/metabolismo , Linhagem Celular , Citosol/metabolismo , Endocitose/efeitos dos fármacos , Humanos , Neutrófilos/efeitos dos fármacos , Peptídeos/síntese química , Peptídeos/química
13.
FASEB J ; 33(4): 5755-5771, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30699302

RESUMO

The antibiotic bacitracin (Bac) inhibits cell wall synthesis of gram-positive bacteria. Here, we discovered a totally different activity of Bac: the neutralization of bacterial exotoxins. Bac prevented intoxication of mammalian cells with the binary enterotoxins Clostridium botulinum C2, C. perfringens ι, C. difficile transferase (CDT), and Bacillus anthracis lethal toxin. The transport (B) subunits of these toxins deliver their respective enzyme (A) subunits into cells. Following endocytosis, the B subunits form pores in membranes of endosomes, which mediate translocation of the A subunits into the cytosol. Bac inhibited formation of such B pores in lipid bilayers in vitro and in living cells, thereby preventing translocation of the A subunit into the cytosol. Bac preserved the epithelial integrity of toxin-treated CaCo-2 monolayers, a model for the human gut epithelium. In conclusion, Bac should be discussed as a therapeutic option against infections with medically relevant toxin-producing bacteria, including C. difficile and B. anthracis, because it inhibits bacterial growth and neutralizes the secreted toxins.-Schnell, L., Felix, I., Müller, B., Sadi, M., von Bank, F., Papatheodorou, P., Popoff, M. R., Aktories, K., Waltenberger, E., Benz, R., Weichbrodt, C., Fauler, M., Frick, M., Barth, H. Revisiting an old antibiotic: bacitracin neutralizes binary bacterial toxins and protects cells from intoxication.


Assuntos
Antibacterianos/farmacologia , Bacitracina/farmacologia , Toxinas Bacterianas/metabolismo , Substâncias Protetoras/farmacologia , Animais , Antígenos de Bactérias/metabolismo , Bacillus anthracis/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Células CACO-2 , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Chlorocebus aethiops , Clostridioides difficile/efeitos dos fármacos , Citosol/efeitos dos fármacos , Citosol/metabolismo , Endocitose/efeitos dos fármacos , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Exotoxinas/metabolismo , Células HeLa , Humanos , Bicamadas Lipídicas/metabolismo , Transporte Proteico/efeitos dos fármacos , Células Vero
14.
Cancer Chemother Pharmacol ; 83(4): 763-774, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30684020

RESUMO

The risk of potential drug-drug interactions (PDI) is poorly studied in oncology. We included 105 patients with advanced non-small-cell lung cancer (NSCLC), 100 patients with advanced breast cancer (BC) and 100 patients of the palliative care unit (PCU) receiving systemic palliative treatment between 2010 and 2015. All patients suffered from advanced incurable cancer and received basic palliative care. PDI were assessed using the hospINDEX of all drugs approved in Switzerland in combination with a specific drug interaction software. Primary study objective was to assess the prognostic impact of PDI per patient cohort using Kaplan-Meier statistics. The median number of comedications was 5 (range 0-15). Major-risk PDI were detected in 74 patients (24.3%). The number of comedications was significantly associated with PDI (p < 0.0001). Major-risk PDI increased from 14% in patients with < 4 comedications to 24% in patients with 4-7 comedications, 40% with 8-11 comedications and 67% in patients with > 11 comedications. Median overall survival (OS) was 8.6 months in NSCLC, 33 months in BC and 1.2 months in PCU patients. PDI were significantly associated with inferior OS in BC (HR = 1.32, 95% CI 1.01-1.74, p = 0.049), but not in NSCLC (HR = 1.11, 95% CI 0.84-1.47, p = 0.45) or PCU (HR = 1.12, 95% CI 0.86-1.45, p = 0.41). PDI remained significantly associated with OS in BC (HR = 1.32, p = 0.049) in the adjusted model. In conclusion, PDI are frequent in patients with advanced cancer and increased caution with polypharmacy is warranted when treating such patients.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Neoplasias/tratamento farmacológico , Cuidados Paliativos/métodos , Polimedicação , Adulto , Idoso , Idoso de 80 Anos ou mais , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Neoplasias da Mama/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Estudos de Coortes , Interações Medicamentosas , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Taxa de Sobrevida
15.
Adv Mater ; 31(2): e1805044, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30411838

RESUMO

The synthesis of hybrid hydrogels by pH-controlled structural transition with exceptional rheological properties as cellular matrix is reported. "Depsi" peptide sequences are grafted onto a polypeptide backbone that undergo a pH-induced intramolecular O-N-acyl migration at physiological conditions affording peptide nanofibers (PNFs) as supramolecular gelators. The polypeptide-PNF hydrogels are mechanically remarkably robust. They reveal exciting thixotropic behavior with immediate in situ recovery after exposure to various high strains over long periods and self-repair of defects by instantaneous reassembly. High cytocompatibility, convenient functionalization by coassembly, and controlled enzymatic degradation but stability in 2D and 3D cell culture as demonstrated by the encapsulation of primary human umbilical vein endothelial cells and neuronal cells open many attractive opportunities for 3D tissue engineering and other biomedical applications.

16.
Adv Sci (Weinh) ; 5(8): 1701036, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30128225

RESUMO

A facile chemical approach integrating supramolecular chemistry, site-selective protein chemistry, and molecular biology is described to engineer synthetic multidomain protein therapeutics that sensitize cancer cells selectively to significantly enhance antitumor efficacy of existing chemotherapeutics. The desired bioactive entities are assembled via supramolecular interactions at the nanoscale into structurally ordered multiprotein complexes comprising a) multiple copies of the chemically modified cyclic peptide hormone somatostatin for selective targeting and internalization into human A549 lung cancer cells expressing SST-2 receptors and b) a new cysteine mutant of the C3bot1 (C3) enzyme from Clostridium botulinum, a Rho protein inhibitor that affects and influences intracellular Rho-mediated processes like endothelial cell migration and blood vessel formation. The multidomain protein complex, SST3-Avi-C3, retargets C3 enzyme into non-small cell lung A549 cancer cells and exhibits exceptional tumor inhibition at a concentration ≈100-fold lower than the clinically approved antibody bevacizumab (Avastin) in vivo. Notably, SST3-Avi-C3 increases tumor sensitivity to a conventional chemotherapeutic (doxorubicin) in vivo. These findings show that the integrated approach holds vast promise to expand the current repertoire of multidomain protein complexes and can pave the way to important new developments in the area of targeted and combination cancer therapy.

17.
J Infect Dis ; 218(9): 1424-1435, 2018 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-29868851

RESUMO

Background: The pathogenic effects of Clostridium difficile are primarily attributable to the production of the large protein toxins (C difficile toxins [Tcd]) A (TcdA) and B (TcdB). These toxins monoglucosylate Rho GTPases in the cytosol of host cells, causing destruction of the actin cytoskeleton with cytotoxic effects. Low human serum albumin (HSA) levels indicate a higher risk of acquiring and developing a severe C difficile infection (CDI) and are associated with recurrent and fatal disease. Methods: We used a combined approach based on docking simulation and biochemical analyses that were performed in vitro on purified proteins and in human epithelial colorectal adenocarcinoma cells (Caco-2), and in vivo on stem cell-derived human intestinal organoids and zebrafish embryos. Results: Our results show that HSA specifically binds via its domain II to TcdA and TcdB and thereby induces their autoproteolytic cleavage at physiological concentrations. This process impairs toxin internalization into the host cells and reduces the toxin-dependent glucosylation of Rho proteins. Conclusions: Our data provide evidence for a specific HSA-dependent self-defense mechanism against C difficile toxins and provide an explanation for the clinical correlation between CDI severity and hypoalbuminemia.


Assuntos
Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Clostridioides difficile/metabolismo , Enterotoxinas/metabolismo , Albumina Sérica Humana/metabolismo , Animais , Células CACO-2 , Linhagem Celular Tumoral , Humanos , Peixe-Zebra/metabolismo
18.
Pathog Dis ; 76(2)2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29635426

RESUMO

Iota toxin is produced by Clostridium perfringens type E strains and associated with diarrhea in cattle and lambs. This binary protein toxin comprises the enzyme component iota a (Ia), which ADP-ribosylates G-actin, and the separate transport component iota b (Ib), which delivers Ia into the cytosol of target cells. Ib binds to cell receptors and forms biologically active toxin complexes with Ia, which cause rounding of adherent cells due to the destruction of the actin cytoskeleton. Here, we report that the human peptide α-defensin-1 protects cultured cells including human colon cells from intoxication with iota toxin. In contrast, the related ß-defensin-1 had no effect, indicating a specific mode of action. The α-defensin-1 did not inhibit ADP-ribosylation of actin by Ia in vitro. Pretreatment of Ib with α-defensin-1 prior to addition of Ia prevented intoxication. Additionally, α-defensin-1 protected cells from cytotoxic effects mediated by Ib in the absence of Ia, implicating that α-defensin-1 interacts with Ib to prevent the formation of biologically active iota toxin on cells. In conclusion, the findings contribute to a better understanding of the functions of α-defensin-1 and suggest that this human peptide might be an attractive starting point to develop novel pharmacological options to treat/prevent diseases associated with iota toxin-producing Clostridium perfringens strains.


Assuntos
ADP Ribose Transferases/antagonistas & inibidores , ADP Ribose Transferases/toxicidade , Toxinas Bacterianas/antagonistas & inibidores , Toxinas Bacterianas/toxicidade , Clostridium perfringens/patogenicidade , Células Epiteliais/fisiologia , alfa-Defensinas/metabolismo , Animais , Células CACO-2 , Chlorocebus aethiops , Células Epiteliais/efeitos dos fármacos , Humanos , Células Vero
19.
Arch Toxicol ; 92(1): 323-336, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28924833

RESUMO

Bacterial protein toxins became valuable molecular tools for the targeted modulation of cell functions in experimental pharmacology and attractive therapeutics because of their potent and specific mode of action in human cells. C2IN-C3lim, a recombinant fusion toxin (~50 kDa) of the Rho-inhibiting C3lim from Clostridium (C.) limosum and a non-toxic portion of the C. botulinum C2 toxin (C2IN), is selectively internalized into the cytosol of monocytic cells where C3lim specifically ADP-ribosylates Rho A and -B, thereby inhibiting Rho-mediated signaling. Thus, we hypothesized that these unique features make C2IN-C3lim an attractive molecule for the targeted pharmacological down-regulation of Rho-mediated functions in monocytes. The analysis of the actin structure and the Rho ADP-ribosylation status implied that C2IN-C3lim entered the cytosol of primary human monocytes from healthy donors ex vivo within 1 h. Moreover, it inhibited the fMLP-induced chemotaxis of human monocytes in a Boyden chamber model ex vivo. Similarly, in a 3-dimensional ex vivo model of extravasation, single cell analysis revealed that C2IN-C3lim-treated cells were not able to move. In a clinically relevant mouse model of blunt chest trauma, the local application of C2IN-C3lim into the lungs after thorax trauma prevented the trauma-induced recruitment of monocytes into the lungs in vivo. Thus, C2IN-C3lim might be an attractive lead compound for novel pharmacological strategies to avoid the cellular damage response caused by monocytes in damaged tissue after trauma and during systemic inflammation. The results suggest that the pathophysiological role of clostridial C3 toxins might be a down-modulation of the innate immune system.


Assuntos
ADP Ribose Transferases/genética , Toxinas Botulínicas/genética , Quimiotaxia/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Proteínas Recombinantes de Fusão/farmacologia , Proteínas rho de Ligação ao GTP/antagonistas & inibidores , Animais , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Humanos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Macrófagos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Monócitos/citologia , Proteínas Recombinantes de Fusão/genética , Traumatismos Torácicos/tratamento farmacológico , Ferimentos não Penetrantes/tratamento farmacológico , Proteínas rho de Ligação ao GTP/metabolismo
20.
Adv Healthc Mater ; 6(21)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28758712

RESUMO

In osteoporosis, bone structure can be improved by the introduction of therapeutic molecules inhibiting bone resorption by osteoclasts. Here, biocompatible hydrogels represent an excellent option for the delivery of pharmacologically active molecules to the bone tissue because of their biodegradability, injectability, and manifold functionalization capacity. The present study reports the preparation of a multifunctional hybrid hydrogel from chemically modified human serum albumin and rationally designed DNA building blocks. The hybrid hydrogel combines advantageous characteristics, including rapid gelation through DNA hybridization under physiological conditions and a self-healing and injectable nature with the possibility of specific loading and spatiotemporally controlled release of active proteins, making it an advanced biomaterial for the local treatment of bone diseases, for example, osteoporosis. The hydrogels are loaded with a recombinant Rho-inhibiting C3 toxin, C2IN-C3lim-G205C. This toxin selectively targets osteoclasts and inhibits Rho-signaling and, thereby, actin-dependent processes in these cells. Application of C2IN-C3lim-G205C toxin-loaded hydrogels effectively reduces osteoclast formation and resorption activity in vitro, as demonstrated by tartrate-resistant acid phosphatase staining and the pit resorption assay. Simultaneously, osteoblast activity, viability, and proliferation are unaffected, thus making C2IN-C3lim-G205C toxin-loaded hybrid hydrogels an attractive pharmacological system for spatial and selective modulation of osteoclast functions to reduce bone resorption.


Assuntos
ADP Ribose Transferases/química , Toxinas Botulínicas/química , DNA/química , Hidrogéis/química , Quinases Associadas a rho/metabolismo , ADP Ribose Transferases/genética , ADP Ribose Transferases/metabolismo , Animais , Toxinas Botulínicas/genética , Toxinas Botulínicas/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Quitosana/química , Humanos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Mutagênese Sítio-Dirigida , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteoclastos/citologia , Osteoclastos/metabolismo , Polietilenoglicóis/química , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/farmacologia , Reologia , Albumina Sérica/química , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA