Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Mol Neurosci ; 13: 85, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32670018

RESUMO

Reducing the extent of secondary degeneration following spinal cord injury (SCI) is necessary to preserve function, but treatment options have thus far been limited. A combination of the ion channel inhibitors Lomerizine (Lom), YM872 and oxATP, to inhibit voltage-gated Ca2+ channels, Ca2+ permeable AMPA receptors, and purinergic P2X7 receptors respectively, effectively limits secondary consequences of injury in in vitro and in vivo models of CNS injury. Here, we investigated the efficacy of these inhibitors in a clinically relevant model of SCI. Fischer (F344) rats were subjected to a moderate (150 kD) contusive SCI at thoracic level T10 and assessed at 2 weeks or 10 weeks post-injury. Lom was delivered orally twice daily and YM872 and oxATP were delivered via osmotic mini-pump implanted at the time of SCI until 2 weeks following injury. Open field locomotion analysis revealed that treatment with the three inhibitors in combination improved the rate of functional recovery of the hind limb (compared to controls) as early as 1-day post-injury, with beneficial effects persisting to 14 days post-injury, while all three inhibitors were present. At 2 weeks following combinatorial treatment, the functional improvement was associated with significantly decreased cyst size, increased immunoreactivity of ß-III tubulin+ve axons, myelin basic protein, and reduced lipid peroxidation by-products, and increased CC1+ve oligodendrocytes and NG2+ve/PDGFα+ve oligodendrocyte progenitor cell densities, compared to vehicle-treated SCI animals. The combination of Lom, oxATP, and YM872 shows preclinical promise for control of secondary degeneration following SCI, and further investigation of long-term sustained treatment is warranted.

2.
Exp Neurol ; 326: 113167, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31904385

RESUMO

Secondary degeneration following an initial injury to the central nervous system (CNS) results in increased tissue loss and is associated with increasing functional impairment. Unilateral partial dorsal transection of the adult rat optic nerve (ON) has proved to be a useful experimental model in which to study factors that contribute to secondary degenerative events. Using this injury model, we here quantified the protective effects of intravitreally administered bi-cistronic adeno-associated viral (AAV2) vectors encoding either brain derived neurotrophic factor (BDNF) or a mutant, phospho-resistant, version of collapsin response mediator protein 2 (CRMP2T555A) on retinal ganglion cells (RGCs), their axons, and associated myelin. To test for potential synergistic interactions, some animals received combined injections of both vectors. Three months post-injury, all treatments maintained RGC numbers in central retina, but only AAV2-BDNF significantly protected ventrally located RGCs exclusively vulnerable to secondary degeneration. Behaviourally, treatments that involved AAV2-BDNF significantly restored the number of smooth-pursuit phases of optokinetic nystagmus. While all therapeutic regimens preserved axonal density and proportions of typical complexes, including heminodes and single nodes, BDNF treatments were generally more effective in maintaining the length of the node of Ranvier in myelin surrounding ventral ON axons after injury. Both AAV2-BDNF and AAV2-CRMP2T555A prevented injury-induced changes in G-ratio and overall myelin thickness, but only AAV2-BDNF administration protected against large-scale myelin decompaction in ventral ON. In summary, in a model of secondary CNS degeneration, both BDNF and CRMP2T555A vectors were neuroprotective, however different efficacies were observed for these overexpressed proteins in the retina and ON, suggesting disparate cellular and molecular targets driving responses for neural repair. The potential use of these vectors to treat other CNS injuries and pathologies is discussed.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/uso terapêutico , Terapia Genética/métodos , Vetores Genéticos/uso terapêutico , Peptídeos e Proteínas de Sinalização Intercelular/uso terapêutico , Proteínas do Tecido Nervoso/uso terapêutico , Traumatismos do Nervo Óptico/terapia , Corpo Vítreo , Animais , Contagem de Células , Feminino , Vetores Genéticos/administração & dosagem , Injeções , Bainha de Mielina , Traumatismos do Nervo Óptico/patologia , Ratos , Retina/patologia , Células Ganglionares da Retina/patologia
3.
RSC Adv ; 10(5): 2856-2869, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35496130

RESUMO

Transferrin (Tf)-functionalized p(HEMA-ran-GMA) nanoparticles were designed to incorporate and release a water-soluble combination of three ion channel antagonists, namely zonampanel monohydrate (YM872), oxidized adenosine triphosphate (oxATP) and lomerizine hydrochloride (LOM) identified as a promising therapy for secondary degeneration that follows neurotrauma. Coupled with a mean hydrodynamic size of 285 nm and near-neutral surface charge of -5.98 mV, the hydrophilic nature of the functionalized polymeric nanoparticles was pivotal in effectively encapsulating the highly water soluble YM872 and oxATP, as well as lipophilic LOM dissolved in water-based medium, by a back-filling method. Maximum loading efficiencies of 11.8 ± 1.05% (w/w), 13.9 ± 1.50% (w/w) and 22.7 ± 4.00% (w/w) LOM, YM872 and oxATP respectively were reported. To obtain an estimate of drug exposure in vivo, drug release kinetics assessment by HPLC was conducted in representative physiological milieu containing 55% (v/v) human serum at 37 °C. In comparison to serum-free conditions, it was demonstrated that the inevitable adsorption of serum proteins on the Tf-functionalized nanoparticle surface as a protein corona impeded the rate of release of LOM and YM872 at both pH 5 and 7.4 over a period of 1 hour. While the release of oxATP from the nanoparticles was detectable for up to 30 minutes under serum-free conditions at pH 7.4, the presence of serum proteins and a slightly acidic environment impaired the detection of the drug, possibly due to its molecular instability. Nevertheless, under representative physiological conditions, all three drugs were released in combination from Tf-functionalized p(HEMA-ran-GMA) nanoparticles and detected for up to 20 minutes. Taken together, the study provided enhanced insight into potential physiological outcomes in the presence of serum proteins, and suggests that p(HEMA-ran-GMA)-based therapeutic nanoparticles may be promising drug delivery vehicles for CNS therapy.

4.
Exp Brain Res ; 237(1): 161-171, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30367192

RESUMO

Following neurotrauma, secondary degeneration of neurons and glia adjacent to the injury leads to further functional loss. A combination of ion channel inhibitors (lomerizine + oxATP + YM872) has been shown to be effective at limiting structural and functional loss due to secondary degeneration. Here we assess efficacy of the combination where oxATP is replaced with Brilliant Blue G (BBG), a more clinically applicable P2X7 receptor inhibitor. Partial optic nerve transection was used to model secondary degeneration in adult female rats. Animals were treated with combinations of lomerizine + YM872 + oxATP or lomerizine + YM872 + BBG, delivered via osmotic mini-pump directly to the injury site. Outcomes assessed were Iba1 + and ED1 + microglia and macrophages, oligodendroglial cell numbers, node/paranode structure and visual function using the optokinetic nystagmus test. The lomerizine + BBG + YM872 combination was at least as effective at the tested concentrations as the lomerizine + oxATP + YM872 combination at preserving node/paranode structure and visual function when delivered locally. However, neither ion channel inhibitor combination significantly improved microglial/macrophage nor oligodendroglial numbers compared to vehicle-treated controls. In conclusion, a locally delivered combination of ion channel inhibitors incorporating lomerizine + BBG + YM872 is at least as effective at limiting secondary degeneration following partial injury to the optic nerve as the combination incorporating oxATP.


Assuntos
Canais Iônicos/antagonistas & inibidores , Canais Iônicos/metabolismo , Degeneração Neural/tratamento farmacológico , Degeneração Neural/etiologia , Traumatismos do Nervo Óptico/complicações , Animais , Bloqueadores dos Canais de Cálcio/uso terapêutico , Proteínas de Ligação ao Cálcio/metabolismo , Moléculas de Adesão Celular Neuronais , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Quimioterapia Combinada , Ectodisplasinas/metabolismo , Feminino , Imidazóis/uso terapêutico , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Proteínas dos Microfilamentos/metabolismo , Microglia/efeitos dos fármacos , Microglia/patologia , Degeneração Neural/patologia , Nistagmo Optocinético/efeitos dos fármacos , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Piperazinas/uso terapêutico , Quinoxalinas/uso terapêutico , Ratos , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Corantes de Rosanilina/uso terapêutico , Tubulina (Proteína)/metabolismo
5.
J Neuroinflammation ; 15(1): 201, 2018 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-29981582

RESUMO

BACKGROUND: Following injury to the central nervous system, increased microglia, secretion of pro- and anti-inflammatory cytokines, and altered blood-brain barrier permeability, a hallmark of degeneration, are observed at and immediately adjacent to the injury site. However, few studies investigate how regions remote from the primary injury could also suffer from inflammation and secondary degeneration. METHODS: Adult female Piebald-Viral-Glaxo (PVG) rats underwent partial transection of the right optic nerve, with normal, age-matched, unoperated animals as controls. Perfusion-fixed brains and right optic nerves were harvested for immunohistochemical assessment of inflammatory markers and blood-brain barrier integrity; fresh-frozen brains were used for multiplex cytokine analysis. RESULTS: Immediately ventral to the optic nerve injury, immunointensity of both the pro-inflammatory biomarker inducible nitric oxide synthase (iNOS) and the anti-inflammatory biomarker arginase-1 (Arg1) increased at 7 days post-injury, with colocalization of iNOS and Arg1 immunoreactivity within individual cells. CD11b+ and CD45+ cells were increased 7 days post-injury, with altered BBB permeability still evident at this time. In the lower and middle optic tract and superior colliculus, IBA1+ resident microglia were first increased at 3 days; ED1+ and CD11b+ cells were first increased in the middle and upper tract and superior colliculus 7 days post-injury. Increased fibrinogen immunoreactivity indicative of altered BBB permeability was first observed in the contralateral upper tract at 3 days and middle tract at 7 days post-injury. Multiplex cytokine analysis of brain homogenates indicated significant increases in the pro-inflammatory cytokines, IL-2 and TNFα, and anti-inflammatory cytokine IL-10 1 day post-injury, decreasing to control levels at 3 days for TNFα and 7 days for IL-2. IL-10 was significantly elevated at 1 and 7 days post-injury with a dip at 3 days post-injury. CONCLUSIONS: Partial injury to the optic nerve induces a complex remote inflammatory response, characterized by rapidly increased pro- and anti-inflammatory cytokines in brain homogenates, increased numbers of IBA1+ cells throughout the visual pathways, and increased CD11b+ and ED1+ inflammatory cells, particularly towards the synaptic terminals. BBB permeability can increase prior to inflammatory cell infiltration, dependent on the brain region.


Assuntos
Barreira Hematoencefálica/patologia , Citocinas/metabolismo , Encefalite/etiologia , Traumatismos do Nervo Óptico/complicações , Traumatismos do Nervo Óptico/patologia , Vias Visuais/patologia , Análise de Variância , Animais , Antígenos CD/metabolismo , Barreira Hematoencefálica/fisiopatologia , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Ectodisplasinas/metabolismo , Encefalite/patologia , Feminino , Fibrinogênio/metabolismo , Lateralidade Funcional , Macrófagos/patologia , Proteínas dos Microfilamentos/metabolismo , Microglia/patologia , Óxido Nítrico Sintase Tipo II/metabolismo , Nervo Óptico/patologia , Ratos , Fatores de Tempo , Vias Visuais/metabolismo
6.
BMC Neurosci ; 18(1): 62, 2017 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-28806920

RESUMO

BACKGROUND: Following partial injury to the central nervous system, cells beyond the initial injury site undergo secondary degeneration, exacerbating loss of neurons, compact myelin and function. Changes in Ca2+ flux are associated with metabolic and structural changes, but it is not yet clear how flux through specific ion channels contributes to the various pathologies. Here, partial optic nerve transection in adult female rats was used to model secondary degeneration. Treatment with combinations of three ion channel inhibitors was used as a tool to investigate which elements of oxidative and structural damage related to long term functional outcomes. The inhibitors employed were the voltage gated Ca2+ channel inhibitor Lomerizine (Lom), the Ca2+ permeable AMPA receptor inhibitor YM872 and the P2X7 receptor inhibitor oxATP. RESULTS: Following partial optic nerve transection, hyper-phosphorylation of Tau and acetylated tubulin immunoreactivity were increased, and Nogo-A immunoreactivity was decreased, indicating that axonal changes occurred acutely. All combinations of ion channel inhibitors reduced hyper-phosphorylation of Tau and increased Nogo-A immunoreactivity at day 3 after injury. However, only Lom/oxATP or all three inhibitors in combination significantly reduced acetylated tubulin immunoreactivity. Most combinations of ion channel inhibitors were effective in restoring the lengths of the paranode and the paranodal gap, indicative of the length of the node of Ranvier, following injury. However, only all three inhibitors in combination restored to normal Ankyrin G length at the node of Ranvier. Similarly, HNE immunoreactivity and loss of oligodendrocyte precursor cells were only limited by treatment with all three ion channel inhibitors in combination. CONCLUSIONS: Data indicate that inhibiting any of a range of ion channels preserves certain elements of axon and node structure and limits some oxidative damage following injury, whereas ionic flux through all three channels must be inhibited to prevent lipid peroxidation and preserve Ankyrin G distribution and OPCs.


Assuntos
Canais de Cálcio/metabolismo , Degeneração Neural/metabolismo , Traumatismos do Nervo Óptico/metabolismo , Receptores de AMPA/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Modelos Animais de Doenças , Feminino , Imidazóis/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Degeneração Neural/tratamento farmacológico , Degeneração Neural/etiologia , Degeneração Neural/patologia , Nistagmo Optocinético/efeitos dos fármacos , Nistagmo Optocinético/fisiologia , Traumatismos do Nervo Óptico/complicações , Traumatismos do Nervo Óptico/tratamento farmacológico , Traumatismos do Nervo Óptico/patologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Piperazinas/farmacologia , Antagonistas do Receptor Purinérgico P2X/farmacologia , Quinoxalinas/farmacologia , Distribuição Aleatória , Nós Neurofibrosos/efeitos dos fármacos , Nós Neurofibrosos/metabolismo , Nós Neurofibrosos/patologia , Ratos , Receptores de AMPA/antagonistas & inibidores
7.
Neural Regen Res ; 12(2): 307-316, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28400815

RESUMO

Studies have shown that a combined application of several ion channel inhibitors immediately after central nervous system injury can inhibit secondary degeneration. However, for clinical use, it is necessary to determine how long after injury the combined treatment of several ion channel inhibitors can be delayed and efficacy maintained. In this study, we delivered Ca2+ entry-inhibiting P2X7 receptor antagonist oxidized-ATP and AMPA receptor antagonist YM872 to the optic nerve injury site via an iPRECIO@ pump immediately, 6 hours, 24 hours and 7 days after partial optic nerve transection surgery. In addition, all of the ion channel inhibitor treated rats were administered with calcium channel antagonist lomerizine hydrochloride. It is important to note that as a result of implantation of the particular pumps required for programmable delivery of therapeutics directly to the injury site, seromas occurred in a significant proportion of animals, indicating infection around the pumps in these animals. Improvements in visual function were observed only when treatment was delayed by 6 hours; phosphorylated Tau was reduced when treatment was delayed by 24 hours or 7 days. Improvements in structure of node/paranode of Ranvier and reductions in oxidative stress indicators were also only observed when treatment was delayed for 6 hours, 24 hours, or 7 days. Benefits of ion channel inhibitors were only observed with time-delayed treatment, suggesting that delayed therapy of Ca2+ ion channel inhibitors produces better neuroprotective effects on secondary degeneration, at least in the presence of seromas.

8.
Neuroscience ; 339: 450-462, 2016 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-27725216

RESUMO

Combinations of Ca2+ channel inhibitors have been proposed as an effective means to prevent excess Ca2+ flux and death of neurons and glia following neurotrauma in vivo. However, it is not yet known if beneficial outcomes such as improved viability have been due to direct effects on intracellular Ca2+ concentrations. Here, the effects of combinations of Lomerizine (Lom), 2,3-dioxo-7-(1H-imidazol-1-yl)6-nitro-1,2,3,4-tetrahydro-1-quinoxalinyl]acetic acid monohydrate (YM872), 3,5-dimethyl-1-adamantanamine (memantine (Mem)) and/or adenosine 5'-triphosphate periodate oxidized sodium salt (oxATP) to block voltage-gated Ca2+ channels, Ca2+ permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, NMDA receptors and purinergic P2X7 receptors (P2X7R) respectively, on Ca2+ concentration and viability of rat primary mixed cortical (MC) cultures exposed to hydrogen peroxide (H2O2) insult, were assessed. The contribution of ryanodine-sensitive intracellular stores to intracellular Ca2+ concentration was also assessed. Live cell calcium imaging revealed that a 30min H2O2 insult induced a slow increase in intracellular Ca2+, in part from intracellular sources, associated with loss of cell viability by 6h. Most combinations of inhibitors that included oxATP significantly decreased Ca2+ influx and increased cell viability when administered simultaneously with H2O2. However, reductions in intracellular Ca2+ concentration were not always linked to improved cell viability. Examination of the density of specific cell subpopulations demonstrated that most combinations of inhibitors that included oxATP preserved NG2+ non-oligodendroglial cells, but preservation of astrocytes and neurons required additional inhibitors. Olig2+ oligodendroglia and ED-1+ activated microglia/macrophages were not preserved by any of the inhibitor combinations. These data indicate that following H2O2 insult, limiting intracellular Ca2+ entry via P2X7R is generally associated with increased cell viability. Protection of NG2+ non-oligodendroglial cells by Ca2+ channel inhibitor combinations may contribute to observed beneficial outcomes in vivo.


Assuntos
Cálcio/metabolismo , Neuroglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Neurotransmissores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Cátions/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Técnicas de Cocultura , Peróxido de Hidrogênio/toxicidade , Imidazóis/farmacologia , Memantina/farmacologia , Neuroglia/metabolismo , Neurônios/metabolismo , Estresse Oxidativo/fisiologia , Piperazinas/farmacologia , Quinoxalinas/farmacologia , Ratos , Receptores de Neurotransmissores/antagonistas & inibidores , Receptores de Neurotransmissores/metabolismo
9.
PLoS One ; 9(8): e104565, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25105800

RESUMO

Red/near-infrared irradiation therapy (R/NIR-IT) delivered by laser or light-emitting diode (LED) has improved functional outcomes in a range of CNS injuries. However, translation of R/NIR-IT to the clinic for treatment of neurotrauma has been hampered by lack of comparative information regarding the degree of penetration of the delivered irradiation to the injury site and the optimal treatment parameters for different CNS injuries. We compared the treatment efficacy of R/NIR-IT at 670 nm and 830 nm, provided by narrow-band LED arrays adjusted to produce equal irradiance, in four in vivo rat models of CNS injury: partial optic nerve transection, light-induced retinal degeneration, traumatic brain injury (TBI) and spinal cord injury (SCI). The number of photons of 670 nm or 830 nm light reaching the SCI injury site was 6.6% and 11.3% of emitted light respectively. Treatment of rats with 670 nm R/NIR-IT following partial optic nerve transection significantly increased the number of visual responses at 7 days after injury (P ≤ 0.05); 830 nm R/NIR-IT was partially effective. 670 nm R/NIR-IT also significantly reduced reactive species and both 670 nm and 830 nm R/NIR-IT reduced hydroxynonenal immunoreactivity (P ≤ 0.05) in this model. Pre-treatment of light-induced retinal degeneration with 670 nm R/NIR-IT significantly reduced the number of Tunel+ cells and 8-hydroxyguanosine immunoreactivity (P ≤ 0.05); outcomes in 830 nm R/NIR-IT treated animals were not significantly different to controls. Treatment of fluid-percussion TBI with 670 nm or 830 nm R/NIR-IT did not result in improvements in motor or sensory function or lesion size at 7 days (P>0.05). Similarly, treatment of contusive SCI with 670 nm or 830 nm R/NIR-IT did not result in significant improvements in functional recovery or reduced cyst size at 28 days (P>0.05). Outcomes from this comparative study indicate that it will be necessary to optimise delivery devices, wavelength, intensity and duration of R/NIR-IT individually for different CNS injury types.


Assuntos
Lesões Encefálicas/radioterapia , Traumatismos do Nervo Óptico/radioterapia , Degeneração Retiniana/radioterapia , Traumatismos da Medula Espinal/radioterapia , Animais , Encéfalo/patologia , Encéfalo/efeitos da radiação , Lesões Encefálicas/patologia , Feminino , Raios Infravermelhos , Masculino , Nervo Óptico/patologia , Nervo Óptico/efeitos da radiação , Traumatismos do Nervo Óptico/patologia , Ratos Sprague-Dawley , Retina/patologia , Retina/efeitos da radiação , Degeneração Retiniana/patologia , Medula Espinal/patologia , Medula Espinal/efeitos da radiação , Traumatismos da Medula Espinal/patologia
10.
Neuropharmacology ; 75: 380-90, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23958451

RESUMO

Following neurotrauma, cells beyond the initial trauma site undergo secondary degeneration, with excess Ca2+ a likely trigger for loss of neurons, compact myelin and function. Treatment using inhibitors of specific Ca2+ channels has shown promise in preclinical studies, but clinical trials have been disappointing and combinatorial approaches are needed. We assessed efficacy of multiple combinations of three Ca2+ channel inhibitors at reducing secondary degeneration following partial optic nerve transection in rat. We used lomerizine to inhibit voltage gated Ca2+ channels; oxidised adenosine-triphosphate (oxATP) to inhibit purinergic P2X7 receptors and/or 2-[7-(1H-imidazol-1-yl)-6-nitro-2,3-dioxo-1,2,3,4-tetrahydro quinoxalin-1-yl]acetic acid (INQ) to inhibit Ca2+ permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. Only the three Ca2+ channel inhibitors delivered in combination significantly preserved visual function, as assessed using the optokinetic nystagmus visual reflex, at 3 months after injury. Preservation of retinal ganglion cells was partial and is unlikely to have accounted for differential effects on function. A range of the Ca2+ channel inhibitor combinations prevented swelling of optic nerve vulnerable to secondary degeneration. Each of the treatments involving lomerizine significantly increased the proportion of axons with normal compact myelin. Nevertheless, limiting decompaction of myelin was not sufficient for preservation of function in our model. Multiple combinations of Ca2+ channel inhibitors reduced formation of atypical node/paranode complexes; outcomes were not associated with preservation of visual function. However, prevention of lengthening of the paranodal gap that was only achieved by treatment with the three Ca2+ channel inhibitors in combination was an important additional effect that likely contributed to the associated preservation of the optokinetic reflex using this combinatorial treatment strategy.


Assuntos
Bloqueadores dos Canais de Cálcio/uso terapêutico , Degeneração Neural/tratamento farmacológico , Degeneração Neural/etiologia , Traumatismos do Nervo Óptico/complicações , Trifosfato de Adenosina/uso terapêutico , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Modelos Animais de Doenças , Combinação de Medicamentos , Feminino , Espectroscopia de Ressonância Magnética , Degeneração Neural/patologia , Proteínas do Tecido Nervoso/metabolismo , Nistagmo Optocinético/efeitos dos fármacos , Nervo Óptico/patologia , Nervo Óptico/ultraestrutura , Traumatismos do Nervo Óptico/tratamento farmacológico , Traumatismos do Nervo Óptico/patologia , Papiledema/etiologia , Papiledema/prevenção & controle , Piperazinas/uso terapêutico , Nós Neurofibrosos/patologia , Nós Neurofibrosos/ultraestrutura , Ratos , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/patologia , Células Ganglionares da Retina/ultraestrutura , Tetra-Hidroisoquinolinas/farmacologia , Trítio
11.
Nanoscale ; 3(3): 907-10, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21132164

RESUMO

RADA16 self-assembling peptide nanofiber scaffolds (SAPNSs) have been shown to have positive effects on neural regeneration following injury to the central nervous system in vivo, but mechanisms are unclear. Here we show that RADA16 SAPNSs form scaffolds of increasing fiber density with increasing peptide concentration which in turn has a concentration-dependent effect on neurons and astrocytes in mixed retinal cultures. Importantly, we report that the final nanoscale fiber architecture is an important factor to consider in designing scaffolds to promote regeneration in the central nervous system.


Assuntos
Cristalização/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Peptídeos/química , Alicerces Teciduais , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais , Conformação Molecular , Complexos Multiproteicos/química , Nanotecnologia/métodos , Tamanho da Partícula , Propriedades de Superfície
12.
J Neurotrauma ; 27(11): 2107-19, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20822460

RESUMO

Traumatic injury to the central nervous system (CNS) is accompanied by the spreading damage of secondary degeneration, resulting in further loss of neurons and function. Partial transection of the optic nerve (ON) has been used as a model of secondary degeneration, in which axons of retinal ganglion cells in the ventral ON are spared from initial dorsal injury, but are vulnerable to secondary degeneration. We have recently demonstrated that early after partial ON injury, oxidative stress spreads through the ventral ON vulnerable to secondary degeneration via astrocytes, and persists in the nerve in aggregates of cellular debris. In this study, we show that diffuse transcranial irradiation of the injury site with far red to near infrared (NIR) light (WARP 10 LED array, center wavelength 670 nm, irradiance 252 W/m(-2), 30 min exposure), as opposed to perception of light at this wavelength, reduced oxidative stress in areas of the ON vulnerable to secondary degeneration following partial injury. The WARP 10 NIR light treatment also prevented increases in NG-2-immunopositive oligodendrocyte precursor cells (OPCs) that occurred in ventral ON as a result of partial ON transection. Importantly, normal visual function was restored by NIR light treatment with the WARP 10 LED array, as assessed using optokinetic nystagmus and the Y-maze pattern discrimination task. To our knowledge, this is the first demonstration that 670-nm NIR light can reduce oxidative stress and improve function in the CNS following traumatic injury in vivo.


Assuntos
Sistema Nervoso Central/patologia , Sistema Nervoso Central/efeitos da radiação , Raios Infravermelhos , Degeneração Neural/patologia , Degeneração Neural/radioterapia , Traumatismos do Nervo Óptico/patologia , Traumatismos do Nervo Óptico/radioterapia , Estresse Oxidativo/efeitos da radiação , Animais , Antígenos/metabolismo , Astrócitos/patologia , Astrócitos/efeitos da radiação , Discriminação Psicológica/fisiologia , Discriminação Psicológica/efeitos da radiação , Feminino , Imuno-Histoquímica , Macrófagos/patologia , Microglia/patologia , Microscopia Eletrônica , Proteínas do Tecido Nervoso/metabolismo , Nistagmo Optocinético/fisiologia , Oligodendroglia/metabolismo , Proteoglicanas/metabolismo , Ratos , Superóxido Dismutase/metabolismo , Visão Ocular/efeitos da radiação
13.
Brain Res Bull ; 81(4-5): 467-71, 2010 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-19913075

RESUMO

Secondary degeneration is a process encompassing damage adjacent to a primary injury, usually involving increased Ca(2+) influx into neurons and glia. Lomerizine dihydrochloride is a calcium channel blocker with relatively selective CNS effects, currently in clinical trials for glaucoma. We have recently demonstrated that, following partial transection of the optic nerve (ON), 1 month of lomerizine treatment protects retinal ganglion cells (RGCs), incompletely preserves visual function and also limits elements of secondary degeneration, including macrophage infiltration. However, under some circumstances macrophages have been shown to have different supportive effects on RGC protection and regeneration, casting doubt on the benefit of longer term therapies that reduce macrophage numbers. Here, we determined whether shorter treatment times (1 day or 1 week) result in improved effects on RGC survival and visual function, and whether benefits are maintained after cessation of treatment. We demonstrate that 1 month of lomerizine is the minimum period required to restore the fast reset phase of the optokinetic nystagmus and maintain it for a further 2 months after cessation of treatment (p>0.05, not different from normal). While 1 week of lomerizine treatment results in temporary recovery of numbers of fast reset phases, the recovery is not maintained after treatment cessation. Similarly, protection of RGC densities requires 1 month of lomerizine treatment, but protection is not maintained after treatment cessation. Importantly, none of the lomerizine treatment protocols resulted in full restoration of visual function, confirming the necessity of combining lomerizine with other treatment modalities.


Assuntos
Bloqueadores dos Canais de Cálcio/uso terapêutico , Traumatismos do Nervo Óptico/tratamento farmacológico , Piperazinas/uso terapêutico , Recuperação de Função Fisiológica/efeitos dos fármacos , Transtornos da Visão/tratamento farmacológico , Animais , Bloqueadores dos Canais de Cálcio/administração & dosagem , Contagem de Células , Sobrevivência Celular/efeitos dos fármacos , Feminino , Imuno-Histoquímica , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Degeneração Neural/tratamento farmacológico , Degeneração Neural/patologia , Degeneração Neural/fisiopatologia , Nistagmo Fisiológico , Traumatismos do Nervo Óptico/patologia , Traumatismos do Nervo Óptico/fisiopatologia , Piperazinas/administração & dosagem , Acompanhamento Ocular Uniforme , Ratos , Ratos Endogâmicos , Retina/efeitos dos fármacos , Retina/patologia , Retina/fisiopatologia , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/patologia , Células Ganglionares da Retina/fisiologia , Fatores de Tempo , Resultado do Tratamento , Transtornos da Visão/patologia , Transtornos da Visão/fisiopatologia
14.
J Neurotrauma ; 27(2): 439-52, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19852581

RESUMO

Secondary degeneration in the central nervous system involves indirect damage to neurons and glia away from the initial injury. Partial transection of the dorsal optic nerve (ON) results in precise spatial separation of the primary trauma from delayed degenerative events in ventrally placed axons and parent somata. Here we conduct an immunohistochemical survey of secondary cellular changes in and around axons and their parent retinal ganglion cell (RGC) somata during the first 3 days after a restricted, dorsal ON transection. This is before the secondary loss of RGCs and axons projecting through the uninjured, ventral portion of the ON. Within 5 min, manganese superoxide dismutase (MnSOD; a marker of oxidative stress) co-localizes within the astrocytic network across the entire profile of the ON. Secondary astrocyte hypertrophy of immunofluorescent labeling was evident from 3 h, with sustained increases in myelin basic protein immunoreactivity across the nerve by 24 h. Increases in NG-2-positive oligodendrocyte precursor cells, ED-1-positive activated microglia/macrophages, and Iba1-positive reactive resident microglia/macrophage numbers were only seen in ON vulnerable to secondary degeneration by 3 days. Changes within RGC somata exclusively vulnerable to secondary degeneration were detected at 24 h, as evidenced by increases in MnSOD immunoreactivity, followed by increases in c-jun immunoreactivity at 3 days. Treatment with the voltage-gated calcium channel blocker lomerizine did not alter any measured outcome. We conclude that oxidative stress spreading via the astrocytic network and from injured axons to parent RGC somata is an early event during secondary degeneration, and containment is likely to be required in order to prevent further damage to the nerve.


Assuntos
Degeneração Neural/metabolismo , Degeneração Neural/patologia , Traumatismos do Nervo Óptico/metabolismo , Traumatismos do Nervo Óptico/patologia , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Axotomia , Feminino , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Macrófagos/metabolismo , Microglia/metabolismo , Degeneração Neural/imunologia , Traumatismos do Nervo Óptico/imunologia , Estresse Oxidativo , Ratos , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Superóxido Dismutase
15.
Exp Neurol ; 216(1): 219-30, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19118550

RESUMO

Secondary degeneration is a form of 'bystander' damage that can affect neural tissue both nearby and remote from an initial injury. Partial optic nerve transection is an excellent model in which to unequivocally differentiate events occurring during secondary degeneration from those resulting from primary CNS injury. We analysed the primary injury site within the optic nerve (ON) and intact areas vulnerable to secondary degeneration. Areas affected by the primary injury showed morphological disruption, loss of beta-III tubulin axonal staining, reduced myelinated axon density, greater proteoglycan expression (phosphacan), increased microglia and macrophage numbers and increased oxidative stress. Similar, but less extreme, changes were seen in areas of the optic nerve undergoing secondary degeneration. The CNS-specific L- and T-type calcium channel blocker lomerizine alleviated some of the changes in areas vulnerable to secondary degeneration. Lomerizine reduced morphological disruption, oxidative stress and phosphacan expression, and limited early increases in macrophage numbers. However, lomerizine failed to prevent progressive de-myelination of ON axons. Within the retina, secondary retinal ganglion cell (RGC) death was significant in areas vulnerable to secondary degeneration. Lomerizine protected RGCs from secondary death at 4 weeks but did not fully restore behavioural function (optokinetic nystagmus). We conclude that blockade of calcium channels is neuroprotective and limits secondary degenerative changes following CNS injury. However such an approach may need to be combined with other treatments to ensure long-term maintenance of full visual function.


Assuntos
Traumatismos do Nervo Óptico/tratamento farmacológico , Piperazinas/farmacologia , Degeneração Walleriana/tratamento farmacológico , Animais , Axônios/efeitos dos fármacos , Axônios/metabolismo , Axônios/patologia , Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/uso terapêutico , Canais de Cálcio Tipo L/efeitos dos fármacos , Canais de Cálcio Tipo L/metabolismo , Modelos Animais de Doenças , Feminino , Gliose/tratamento farmacológico , Gliose/etiologia , Gliose/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Fibras Nervosas Mielinizadas/efeitos dos fármacos , Fibras Nervosas Mielinizadas/metabolismo , Fibras Nervosas Mielinizadas/patologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Nervo Óptico/efeitos dos fármacos , Nervo Óptico/patologia , Nervo Óptico/fisiopatologia , Traumatismos do Nervo Óptico/patologia , Traumatismos do Nervo Óptico/fisiopatologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Piperazinas/uso terapêutico , Ratos , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/metabolismo , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Resultado do Tratamento , Tubulina (Proteína)/efeitos dos fármacos , Tubulina (Proteína)/metabolismo , Degeneração Walleriana/patologia , Degeneração Walleriana/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA