Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neurol ; 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39207522

RESUMO

Ataxia with anti-regulator of G-protein signaling 8 autoantibodies (RGS8-Abs) is an autoimmune disease recently described in four patients. The present study aimed to identify other patients with RGS8-Abs, describe their clinical features, including the link between RGS8-related autoimmune cerebellar ataxia (ACA) and cancer. Patients with RGS8-Abs were identified retrospectively in the biological collections of the French Reference Center for Paraneoplastic Neurological Syndrome and the University of California San Francisco Center for Encephalitis and Meningitis. Clinical data were collected, and cerebrospinal fluid, serum, and tumor pathological samples were retrieved to characterize the autoantibodies and the associated malignancies. Only three patients with RGS8-Abs were identified. All of them presented with a pure cerebellar ataxia of mild to severe course, unresponsive to current immunotherapy regimens for ACA. Two patients presented with a Hodgkin lymphoma of the rare specific subtype called nodular lymphocyte-predominant Hodgkin lymphoma, with very mild extension. Autoantibodies detected in all patients enriched the same epitope on the RGS8 protein, which is an intracellular protein physiologically expressed in Purkinje cells but also ectopically expressed specifically in lymphoma cells of patients with RGS8-related ACA. The present results and those of the four cases previously described suggest that RGS8-Abs define a new paraneoplastic neurological syndrome of extreme rarity found mostly in middle-aged males that associates pure cerebellar ataxia and a particular lymphoma specifically expressing the RGS8 antigen. As in other paraneoplastic ACA with intracellular antigen, the disease course is severe, and patients tend to exhibit a poor response to immune therapy.

2.
Sci Transl Med ; 16(753): eadl3758, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38924428

RESUMO

Vitamin B12 is critical for hematopoiesis and myelination. Deficiency can cause neurologic deficits including loss of coordination and cognitive decline. However, diagnosis relies on measurement of vitamin B12 in the blood, which may not accurately reflect the concentration in the brain. Using programmable phage display, we identified an autoantibody targeting the transcobalamin receptor (CD320) in a patient with progressive tremor, ataxia, and scanning speech. Anti-CD320 impaired cellular uptake of cobalamin (B12) in vitro by depleting its target from the cell surface. Despite a normal serum concentration, B12 was nearly undetectable in her cerebrospinal fluid (CSF). Immunosuppressive treatment and high-dose systemic B12 supplementation were associated with increased B12 in the CSF and clinical improvement. Optofluidic screening enabled isolation of a patient-derived monoclonal antibody that impaired B12 transport across an in vitro model of the blood-brain barrier (BBB). Autoantibodies targeting the same epitope of CD320 were identified in seven other patients with neurologic deficits of unknown etiology, 6% of healthy controls, and 21.4% of a cohort of patients with neuropsychiatric lupus. In 132 paired serum and CSF samples, detection of anti-CD320 in the blood predicted B12 deficiency in the brain. However, these individuals did not display any hematologic signs of B12 deficiency despite systemic CD320 impairment. Using a genome-wide CRISPR screen, we found that the low-density lipoprotein receptor serves as an alternative B12 uptake pathway in hematopoietic cells. These findings dissect the tissue specificity of B12 transport and elucidate an autoimmune neurologic condition that may be amenable to immunomodulatory treatment and nutritional supplementation.


Assuntos
Autoanticorpos , Deficiência de Vitamina B 12 , Vitamina B 12 , Humanos , Deficiência de Vitamina B 12/imunologia , Vitamina B 12/sangue , Autoanticorpos/sangue , Autoanticorpos/imunologia , Feminino , Receptores de Superfície Celular/metabolismo , Antígenos CD/metabolismo , Pessoa de Meia-Idade , Doenças Autoimunes/imunologia , Doenças Autoimunes/sangue , Barreira Hematoencefálica/metabolismo , Masculino
3.
Ann Neurol ; 94(6): 1086-1101, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37632288

RESUMO

OBJECTIVE: Co-occurring anti-tripartite motif-containing protein 9 and 67 autoantibodies (TRIM9/67-IgG) have been reported in only a very few cases of paraneoplastic cerebellar syndrome. The value of these biomarkers and the most sensitive methods of TRIM9/67-IgG detection are not known. METHODS: We performed a retrospective, multicenter study to evaluate the cerebrospinal fluid and serum of candidate TRIM9/67-IgG cases by tissue-based immunofluorescence, peptide phage display immunoprecipitation sequencing, overexpression cell-based assay (CBA), and immunoblot. Cases in which TRIM9/67-IgG was detected by at least 2 assays were considered TRIM9/67-IgG positive. RESULTS: Among these cases (n = 13), CBA was the most sensitive (100%) and revealed that all cases had TRIM9 and TRIM67 autoantibodies. Of TRIM9/67-IgG cases with available clinical history, a subacute cerebellar syndrome was the most common presentation (n = 7/10), followed by encephalitis (n = 3/10). Of these 10 patients, 70% had comorbid cancer (7/10), 85% of whom (n = 6/7) had confirmed metastatic disease. All evaluable cancer biopsies expressed TRIM9 protein (n = 5/5), whose expression was elevated in the cancerous regions of the tissue in 4 of 5 cases. INTERPRETATION: TRIM9/67-IgG is a rare but likely high-risk paraneoplastic biomarker for which CBA appears to be the most sensitive diagnostic assay. ANN NEUROL 2023;94:1086-1101.


Assuntos
Proteínas do Tecido Nervoso , Degeneração Paraneoplásica Cerebelar , Humanos , Estudos Retrospectivos , Proteínas do Tecido Nervoso/metabolismo , Biomarcadores/líquido cefalorraquidiano , Autoanticorpos/líquido cefalorraquidiano , Imunoglobulina G
4.
Artigo em Inglês | MEDLINE | ID: mdl-35581007

RESUMO

OBJECTIVE: To identify the autoantigen in 2 individuals with possible seronegative paraneoplastic neuropathy. METHODS: Serum and CSF were screened by tissue-based assay and panned for candidate autoantibodies by phage display immunoprecipitation sequencing (PhIP-Seq). The candidate antigen was validated by immunostaining knockout tissue and HEK 293T cell-based assay. RESULTS: Case 1 presented with gait instability, distal lower extremity numbness, and paresthesias after a recent diagnosis of serous uterine and fallopian carcinoma. Case 2 had a remote history of breast adenocarcinoma and presented with gait instability, distal lower extremity numbness, and paresthesias that progressed to generalized weakness. CSF and serum from both patients immunostained the axon initial segment (AIS) and node of Ranvier (NoR) of mice and enriched ßIV-spectrin by PhIP-Seq. Patient CSF and serum failed to immunostain NoRs in dorsal root sensory neurons from ßI/ßIV-deficient mice. ßIV-spectrin autoantibodies were confirmed by overexpression of AIS and nodal ßIV-spectrin isoforms Σ1 and Σ6 by a cell-based assay. ßIV-spectrin was not enriched in a combined 4,815 PhIP-Seq screens of healthy and other neurologic disease patients. DISCUSSION: Therefore, ßIV-spectrin autoantibodies may be a marker of paraneoplastic neuropathy. CLASSIFICATION OF EVIDENCE: This study provides Class IV evidence that ßIV-spectrin antibodies are specific autoantibody biomarkers for paraneoplastic neuropathy.


Assuntos
Polineuropatia Paraneoplásica , Espectrina , Humanos , Autoanticorpos , Hipestesia , Parestesia , Animais , Camundongos
6.
Nature ; 603(7900): 321-327, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35073561

RESUMO

Multiple sclerosis (MS) is a heterogenous autoimmune disease in which autoreactive lymphocytes attack the myelin sheath of the central nervous system. B lymphocytes in the cerebrospinal fluid (CSF) of patients with MS contribute to inflammation and secrete oligoclonal immunoglobulins1,2. Epstein-Barr virus (EBV) infection has been epidemiologically linked to MS, but its pathological role remains unclear3. Here we demonstrate high-affinity molecular mimicry between the EBV transcription factor EBV nuclear antigen 1 (EBNA1) and the central nervous system protein glial cell adhesion molecule (GlialCAM) and provide structural and in vivo functional evidence for its relevance. A cross-reactive CSF-derived antibody was initially identified by single-cell sequencing of the paired-chain B cell repertoire of MS blood and CSF, followed by protein microarray-based testing of recombinantly expressed CSF-derived antibodies against MS-associated viruses. Sequence analysis, affinity measurements and the crystal structure of the EBNA1-peptide epitope in complex with the autoreactive Fab fragment enabled tracking of the development of the naive EBNA1-restricted antibody to a mature EBNA1-GlialCAM cross-reactive antibody. Molecular mimicry is facilitated by a post-translational modification of GlialCAM. EBNA1 immunization exacerbates disease in a mouse model of MS, and anti-EBNA1 and anti-GlialCAM antibodies are prevalent in patients with MS. Our results provide a mechanistic link for the association between MS and EBV and could guide the development of new MS therapies.


Assuntos
Infecções por Vírus Epstein-Barr , Esclerose Múltipla , Animais , Linfócitos B , Moléculas de Adesão Celular Neurônio-Glia , Antígenos Nucleares do Vírus Epstein-Barr , Herpesvirus Humano 4 , Humanos , Camundongos , Proteínas do Tecido Nervoso
7.
Front Neurol ; 13: 1102484, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36756346

RESUMO

Neuroinvasive infection is the most common cause of meningoencephalitis in people living with human immunodeficiency virus (HIV), but autoimmune etiologies have been reported. We present the case of a 51-year-old man living with HIV infection with steroid-responsive meningoencephalitis whose comprehensive pathogen testing was non-diagnostic. Subsequent tissue-based immunofluorescence with acute-phase cerebrospinal fluid revealed anti-neural antibodies localizing to the axon initial segment (AIS), the node of Ranvier (NoR), and the subpial space. Phage display immunoprecipitation sequencing identified ankyrinG (AnkG) as the leading candidate autoantigen. A synthetic blocking peptide encoding the PhIP-Seq-identified AnkG epitope neutralized CSF IgG binding to the AIS and NoR, thereby confirming a monoepitopic AnkG antibody response. However, subpial immunostaining persisted, indicating the presence of additional autoantibodies. Review of archival tissue-based staining identified candidate AnkG autoantibodies in a 60-year-old woman with metastatic ovarian cancer and seizures that were subsequently validated by cell-based assay. AnkG antibodies were not detected by tissue-based assay and/or PhIP-Seq in control CSF (N = 39), HIV CSF (N = 79), or other suspected and confirmed neuroinflammatory CSF cases (N = 1,236). Therefore, AnkG autoantibodies in CSF are rare but extend the catalog of AIS and NoR autoantibodies associated with neurological autoimmunity.

8.
Front Neurol ; 12: 728700, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34744969

RESUMO

The development of autoimmune antibody panels has improved the diagnosis of paraneoplastic neurological disorders (PNDs) of the brain and spinal cord. Here, we present a case of a woman with a history of breast cancer who presented with a subacute sensory ataxia that progressed over 18 months. Her examination and diagnostic studies were consistent with a myelopathy. Metabolic, infectious, and autoimmune testing were non-diagnostic. However, she responded to empirical immunosuppression, prompting further workup for an autoimmune etiology. An unbiased autoantibody screen utilizing phage display immunoprecipitation sequencing (PhIP-Seq) identified antibodies to the anti-Yo antigens cerebellar degeneration related protein 2 like (CDR2L) and CDR2, which were subsequently validated by immunoblot and cell-based overexpression assays. Furthermore, CDR2L protein expression was restricted to HER2 expressing tumor cells in the patient's breast tissue. Recent evidence suggests that CDR2L is likely the primary antigen in anti-Yo paraneoplastic cerebellar degeneration, but anti-Yo myelopathy is poorly characterized. By immunostaining, we detected neuronal CDR2L protein expression in the murine and human spinal cord. This case demonstrates the diagnostic utility of unbiased assays in patients with suspected PNDs, supports prior observations that anti-Yo PND can be associated with isolated myelopathy, and implicates CDR2L as a potential antigen in the spinal cord.

9.
JAMA Neurol ; 78(12): 1503-1509, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34694339

RESUMO

Importance: Neuropsychiatric manifestations of COVID-19 have been reported in the pediatric population. Objective: To determine whether anti-SARS-CoV-2 and autoreactive antibodies are present in the cerebrospinal fluid (CSF) of pediatric patients with COVID-19 and subacute neuropsychiatric dysfunction. Design, Setting, and Participants: This case series includes 3 patients with recent SARS-CoV-2 infection as confirmed by reverse transcriptase-polymerase chain reaction or IgG serology with recent exposure history who were hospitalized at the University of California, San Francisco Benioff Children's Hospital and for whom a neurology consultation was requested over a 5-month period in 2020. During this period, 18 total children were hospitalized and tested positive for acute SARS-CoV-2 infection by reverse transcriptase-polymerase chain reaction or rapid antigen test. Main Outcomes and Measures: Detection and characterization of CSF anti-SARS-CoV-2 IgG and antineural antibodies. Results: Of 3 included teenaged patients, 2 patients had intrathecal anti-SARS-CoV-2 antibodies. CSF IgG from these 2 patients also indicated antineural autoantibodies on anatomic immunostaining. Autoantibodies targeting transcription factor 4 (TCF4) in 1 patient who appeared to have a robust response to immunotherapy were also validated. Conclusions and Relevance: Pediatric patients with COVID-19 and prominent subacute neuropsychiatric symptoms, ranging from severe anxiety to delusional psychosis, may have anti-SARS-CoV-2 and antineural antibodies in their CSF and may respond to immunotherapy.


Assuntos
Anticorpos Antivirais/líquido cefalorraquidiano , Autoanticorpos/líquido cefalorraquidiano , COVID-19/complicações , COVID-19/imunologia , Transtornos Mentais/líquido cefalorraquidiano , Transtornos Mentais/etiologia , Doenças do Sistema Nervoso/líquido cefalorraquidiano , Doenças do Sistema Nervoso/etiologia , Adolescente , Animais , Ansiedade/etiologia , Ansiedade/psicologia , Autoimunidade , Feminino , Humanos , Masculino , Fumar Maconha/imunologia , Camundongos , Transtornos dos Movimentos/etiologia , Exame Neurológico , Fator de Transcrição 4/imunologia
10.
World Neurosurg ; 105: 1039.e13-1039.e18, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28684370

RESUMO

BACKGROUND: Choroid plexus papillomas (CPPs) are rare benign tumors, and the pigmented subtype is observed even more rarely. CASE DESCRIPTION: We present the case of a 43-year-old woman with complaints of headache and progressive left monocular visual deterioration, whose initial plain computed tomography CT scan showed an ovate high-density tumor located within the insellar region. Magnetic resonance imaging revealed a homogeneously contrast-enhancing tumor extending from the sella turcica to the suprasellar cistern. Single-nostril transsphenoidal endoscopic resection followed by subfrontal subtotal resection was performed in this patient. Postoperative histology revealed that the tumor consisted of hyperchromatic tissue with papillary features. Higher-resolution examination of the tissue revealed this tissue was composed of hyperplastic columnar epithelial cells with hyperchromatic cytoplasmic pigment. Subsequent immunohistochemistry identified the lesion as a pigmented choroid plexus papilloma. Here we review the current literature, discuss the origin of the tumor, the differential diagnosis, and the roles of surgery and radiotherapy. CONCLUSIONS: This case study provides important clinical information for the evaluation, diagnosis, and treatment of pigmented CPP in the sellar region.


Assuntos
Papiloma do Plexo Corióideo/diagnóstico por imagem , Papiloma do Plexo Corióideo/cirurgia , Pigmentação , Sela Túrcica/diagnóstico por imagem , Sela Túrcica/cirurgia , Adulto , Feminino , Humanos
11.
Neuron ; 84(1): 78-91, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25277454

RESUMO

Abnormal dendritic complexity is a shared feature of many neurodevelopmental disorders associated with neurological defects. Here, we found that the actin-crosslinking protein filamin A (FLNA) is overexpressed in tuberous sclerosis complex (TSC) mice, a PI3K-mTOR model of neurodevelopmental disease that is associated with abnormal dendritic complexity. Both under- and overexpression of FLNA in wild-type neurons led to more complex dendritic arbors in vivo, suggesting that an optimal level of FLNA expression is required for normal dendritogenesis. In Tsc1(null) neurons, knocking down FLNA in vivo prevented dendritic abnormalities. Surprisingly, FLNA overexpression in Tsc1(null) neurons was dependent on MEK1/2 but not mTOR activity, despite both pathways being hyperactive. In addition, increasing MEK-ERK1/2 activity led to dendritic abnormalities via FLNA, and decreasing MEK-ERK1/2 signaling in Tsc1(null) neurons rescued dendritic defects. These data demonstrate that altered FLNA expression increases dendritic complexity and contributes to pathologic dendritic patterning in TSC in an mTOR-independent, ERK1/2-dependent manner.


Assuntos
Dendritos/metabolismo , Filaminas/biossíntese , Regulação da Expressão Gênica , Sistema de Sinalização das MAP Quinases/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Esclerose Tuberosa/metabolismo , Adulto , Animais , Animais Recém-Nascidos , Linhagem Celular Tumoral , Dendritos/patologia , Feminino , Filaminas/genética , Humanos , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Pessoa de Meia-Idade , Técnicas de Cultura de Órgãos , Esclerose Tuberosa/patologia , Adulto Jovem
12.
PLoS One ; 9(5): e96956, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24806451

RESUMO

Hyperactive mammalian target of rapamycin (mTOR) is associated with cognitive deficits in several neurological disorders including tuberous sclerosis complex (TSC). The phosphorylation of the mRNA-binding protein FMRP reportedly depends on mTOR complex 1 (mTORC1) activity via p70 S6 kinase 1 (S6K1). Because this phosphorylation is thought to regulate the translation of messages important for synaptic plasticity, we explored whether FMRP phosphorylation of the S6K1-dependent residue (S499) is altered in TSC and states of dysregulated TSC-mTORC1 signaling. Surprisingly, we found that FMRP S499 phosphorylation was unchanged in heterozygous and conditional Tsc1 knockout mice despite significantly elevated mTORC1-S6K1 activity. Neither up- nor down-regulation of the mTORC1-S6K1 axis in vivo or in vitro had any effect on phospho-FMRP S499 levels. In addition, FMRP S499 phosphorylation was unaltered in S6K1-knockout mice. Collectively, these data strongly suggest that FMRP S499 phosphorylation is independent of mTORC1-S6K1 activity and is not altered in TSC.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Esclerose Tuberosa/genética , Animais , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Knockout , Complexos Multiproteicos/genética , Plasticidade Neuronal/genética , Fosforilação , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética , Esclerose Tuberosa/mortalidade , Esclerose Tuberosa/patologia
13.
Int J Dev Neurosci ; 31(7): 667-78, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23485365

RESUMO

Tuberous sclerosis complex (TSC) is an autosomal dominant monogenetic disorder that is characterized by the formation of benign tumors in several organs as well as brain malformations and neuronal defects. TSC is caused by inactivating mutations in one of two genes, TSC1 and TSC2, resulting in increased activity of the mammalian Target of Rapamycin (mTOR). Here, we explore the cytoarchitectural and functional CNS aberrations that may account for the neurological presentations of TSC, notably seizures, hydrocephalus, and cognitive and psychological impairments. In particular, recent mouse models of brain lesions are presented with an emphasis on using electroporation to allow the generation of discrete lesions resulting from loss of heterozygosity during perinatal development. Cortical lesions are thought to contribute to epileptogenesis and worsening of cognitive defects. However, it has recently been suggested that being born with a mutant allele without loss of heterozygosity and associated cortical lesions is sufficient to generate cognitive and neuropsychiatric problems. We will thus discuss the function of mTOR hyperactivity on neuronal circuit formation and the potential consequences of being born heterozygous on neuronal function and the biochemistry of synaptic plasticity, the cellular substrate of learning and memory. Ultimately, a major goal of TSC research is to identify the cellular and molecular mechanisms downstream of mTOR underlying the neurological manifestations observed in TSC patients and identify novel therapeutic targets to prevent the formation of brain lesions and restore neuronal function.


Assuntos
Sistema Nervoso Central/metabolismo , Transtornos Cognitivos/etiologia , Epilepsia/etiologia , Esclerose Tuberosa , Animais , Sistema Nervoso Central/patologia , Transtornos Cognitivos/genética , Modelos Animais de Doenças , Epilepsia/genética , Humanos , Camundongos , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Esclerose Tuberosa/complicações , Esclerose Tuberosa/genética , Esclerose Tuberosa/patologia
14.
J Biol Chem ; 278(42): 41472-81, 2003 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-12896970

RESUMO

Cerebellar granule neuron (CGN) survival depends on activity of the myocyte enhancer factor-2 (MEF2) transcription factors. Neuronal MEF2 activity is regulated by depolarization via a mechanism that is presently unclear. Here, we show that depolarization-mediated MEF2 activity and CGN survival are compromised by overexpression of the MEF2 repressor histone deacetylase-5 (HDAC5). Furthermore, removal of depolarization induced rapid cytoplasm-to-nuclear translocation of endogenous HDAC5. This effect was mimicked by addition of the calcium/calmodulin-dependent kinase (CaMK) inhibitor KN93 to depolarizing medium. Removal of depolarization or KN93 addition resulted in dephosphorylation of HDAC5 and its co-precipitation with MEF2D. HDAC5 nuclear translocation triggered by KN93 induced a marked loss of MEF2 activity and subsequent apoptosis. To selectively decrease CaMKII, CGNs were incubated with an antisense oligonucleotide to CaMKIIalpha. This antisense decreased CaMKIIalpha expression and induced nuclear shuttling of HDAC5 in CGNs maintained in depolarizing medium. Selectivity of the CaMKIIalpha antisense was demonstrated by its lack of effect on CaMKIV-mediated CREB phosphorylation. Finally, antisense to CaMKIIalpha induced caspase-3 activation and apoptosis, whereas a missense control oligonucleotide had no effect on CGN survival. These results indicate that depolarization-mediated calcium influx acts through CaMKII to inhibit HDAC5, thereby sustaining high MEF2 activity in CGNs maintained under depolarizing conditions.


Assuntos
Cerebelo/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Inibidores de Histona Desacetilases , Neurônios/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Adenoviridae/genética , Animais , Apoptose , Western Blotting , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Caspase 3 , Caspases/metabolismo , Núcleo Celular/metabolismo , Meios de Cultura Livres de Soro/farmacologia , Citoplasma/metabolismo , Ativação Enzimática , Epitopos , Genes Dominantes , Histona Desacetilases , Imuno-Histoquímica , Fatores de Transcrição MEF2 , Mutação , Fatores de Regulação Miogênica , Oligonucleotídeos Antissenso/farmacologia , Fosforilação , Potássio/farmacologia , Testes de Precipitina , Isoformas de Proteínas , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA