Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Brain ; 145(7): 2486-2506, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35148384

RESUMO

Microtubules play fundamental roles in the maintenance of neuronal processes and in synaptic function and plasticity. While dynamic microtubules are mainly composed of tyrosinated tubulin, long-lived microtubules contain detyrosinated tubulin, suggesting that the tubulin tyrosination/detyrosination cycle is a key player in the maintenance of microtubule dynamics and neuronal homeostasis, conditions that go awry in neurodegenerative diseases. In the tyrosination/detyrosination cycle, the C-terminal tyrosine of α-tubulin is removed by tubulin carboxypeptidases and re-added by tubulin tyrosine ligase (TTL). Here we show that TTL heterozygous mice exhibit decreased tyrosinated microtubules, reduced dendritic spine density and both synaptic plasticity and memory deficits. We further report decreased TTL expression in sporadic and familial Alzheimer's disease, and reduced microtubule dynamics in human neurons harbouring the familial APP-V717I mutation. Finally, we show that synapses visited by dynamic microtubules are more resistant to oligomeric amyloid-ß peptide toxicity and that expression of TTL, by restoring microtubule entry into spines, suppresses the loss of synapses induced by amyloid-ß peptide. Together, our results demonstrate that a balanced tyrosination/detyrosination tubulin cycle is necessary for the maintenance of synaptic plasticity, is protective against amyloid-ß peptide-induced synaptic damage and that this balance is lost in Alzheimer's disease, providing evidence that defective tubulin retyrosination may contribute to circuit dysfunction during neurodegeneration in Alzheimer's disease.


Assuntos
Doença de Alzheimer , Tubulina (Proteína) , Doença de Alzheimer/metabolismo , Animais , Humanos , Camundongos , Microtúbulos , Peptídeos/metabolismo , Tubulina (Proteína)/metabolismo , Tirosina/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33876743

RESUMO

Chemotherapy-induced peripheral neuropathy (CIPN) is a major side effect from cancer treatment with no known method for prevention or cure in clinics. CIPN often affects unmyelinated nociceptive sensory terminals. Despite the high prevalence, molecular and cellular mechanisms that lead to CIPN are still poorly understood. Here, we used a genetically tractable Drosophila model and primary sensory neurons isolated from adult mouse to examine the mechanisms underlying CIPN and identify protective pathways. We found that chronic treatment of Drosophila larvae with paclitaxel caused degeneration and altered the branching pattern of nociceptive neurons, and reduced thermal nociceptive responses. We further found that nociceptive neuron-specific overexpression of integrins, which are known to support neuronal maintenance in several systems, conferred protection from paclitaxel-induced cellular and behavioral phenotypes. Live imaging and superresolution approaches provide evidence that paclitaxel treatment causes cellular changes that are consistent with alterations in endosome-mediated trafficking of integrins. Paclitaxel-induced changes in recycling endosomes precede morphological degeneration of nociceptive neuron arbors, which could be prevented by integrin overexpression. We used primary dorsal root ganglia (DRG) neuron cultures to test conservation of integrin-mediated protection. We show that transduction of a human integrin ß-subunit 1 also prevented degeneration following paclitaxel treatment. Furthermore, endogenous levels of surface integrins were decreased in paclitaxel-treated mouse DRG neurons, suggesting that paclitaxel disrupts recycling in vertebrate sensory neurons. Altogether, our study supports conserved mechanisms of paclitaxel-induced perturbation of integrin trafficking and a therapeutic potential of restoring neuronal interactions with the extracellular environment to antagonize paclitaxel-induced toxicity in sensory neurons.


Assuntos
Integrinas/metabolismo , Nociceptores/metabolismo , Doenças do Sistema Nervoso Periférico/metabolismo , Animais , Antineoplásicos/toxicidade , Células Cultivadas , Drosophila melanogaster , Endossomos/metabolismo , Feminino , Gânglios Espinais/citologia , Integrinas/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nociceptores/fisiologia , Paclitaxel/toxicidade , Doenças do Sistema Nervoso Periférico/etiologia
3.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33468672

RESUMO

The pathogenesis of chemotherapy-induced peripheral neuropathy (CIPN) is poorly understood. Here, we report that the CIPN-causing drug bortezomib (Bort) promotes delta 2 tubulin (D2) accumulation while affecting microtubule stability and dynamics in sensory neurons in vitro and in vivo and that the accumulation of D2 is predominant in unmyelinated fibers and a hallmark of bortezomib-induced peripheral neuropathy (BIPN) in humans. Furthermore, while D2 overexpression was sufficient to cause axonopathy and inhibit mitochondria motility, reduction of D2 levels alleviated both axonal degeneration and the loss of mitochondria motility induced by Bort. Together, our data demonstrate that Bort, a compound structurally unrelated to tubulin poisons, affects the tubulin cytoskeleton in sensory neurons in vitro, in vivo, and in human tissue, indicating that the pathogenic mechanisms of seemingly unrelated CIPN drugs may converge on tubulin damage. The results reveal a previously unrecognized pathogenic role for D2 in BIPN that may occur through altered regulation of mitochondria motility.


Assuntos
Bortezomib/efeitos adversos , Neoplasias/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/genética , Tubulina (Proteína)/genética , Animais , Antineoplásicos/efeitos adversos , Axônios/efeitos dos fármacos , Axônios/patologia , Modelos Animais de Doenças , Drosophila melanogaster/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Larva/efeitos dos fármacos , Larva/genética , Microtúbulos/efeitos dos fármacos , Microtúbulos/genética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Dinâmica Mitocondrial/efeitos dos fármacos , Dinâmica Mitocondrial/genética , Neoplasias/genética , Neoplasias/patologia , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/patologia , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/patologia , Peixe-Zebra/genética
4.
Nat Commun ; 11(1): 4640, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32934232

RESUMO

Small molecule inhibitors are prime reagents for studies in microtubule cytoskeleton research, being applicable across a range of biological models and not requiring genetic engineering. However, traditional chemical inhibitors cannot be experimentally applied with spatiotemporal precision suiting the length and time scales inherent to microtubule-dependent cellular processes. We have synthesised photoswitchable paclitaxel-based microtubule stabilisers, whose binding is induced by photoisomerisation to their metastable state. Photoisomerising these reagents in living cells allows optical control over microtubule network integrity and dynamics, cell division and survival, with biological response on the timescale of seconds and spatial precision to the level of individual cells within a population. In primary neurons, they enable regulation of microtubule dynamics resolved to subcellular regions within individual neurites. These azobenzene-based microtubule stabilisers thus enable non-invasive, spatiotemporally precise modulation of the microtubule cytoskeleton in living cells, and promise new possibilities for studying intracellular transport, cell motility, and neuronal physiology.


Assuntos
Microtúbulos/química , Paclitaxel/química , Linhagem Celular Tumoral , Citoesqueleto/química , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Humanos , Isomerismo , Microtúbulos/metabolismo , Neurônios/química , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Paclitaxel/farmacologia
5.
J Clin Invest ; 130(4): 2024-2040, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31945017

RESUMO

After trauma, regeneration of adult CNS axons is abortive, causing devastating neurologic deficits. Despite progress in rehabilitative care, there is no effective treatment that stimulates axonal growth following injury. Using models with different regenerative capacities, followed by gain- and loss-of-function analysis, we identified profilin 1 (Pfn1) as a coordinator of actin and microtubules (MTs), powering axonal growth and regeneration. In growth cones, Pfn1 increased actin retrograde flow, MT growth speed, and invasion of filopodia by MTs, orchestrating cytoskeletal dynamics toward axonal growth. In vitro, active Pfn1 promoted MT growth in a formin-dependent manner, whereas localization of MTs to growth cone filopodia was facilitated by direct MT binding and interaction with formins. In vivo, Pfn1 ablation limited regeneration of growth-competent axons after sciatic nerve and spinal cord injury. Adeno-associated viral (AAV) delivery of constitutively active Pfn1 to rodents promoted axonal regeneration, neuromuscular junction maturation, and functional recovery of injured sciatic nerves, and increased the ability of regenerating axons to penetrate the inhibitory spinal cord glial scar. Thus, we identify Pfn1 as an important regulator of axonal regeneration and suggest that AAV-mediated delivery of constitutively active Pfn1, together with the identification of modulators of Pfn1 activity, should be considered to treat the injured nervous system.


Assuntos
Citoesqueleto , Terapia Genética , Cones de Crescimento/metabolismo , Regeneração Nervosa , Nervo Isquiático/fisiologia , Traumatismos da Medula Espinal , Animais , Citoesqueleto/genética , Citoesqueleto/metabolismo , Dependovirus , Camundongos , Camundongos Knockout , Junção Neuromuscular/genética , Junção Neuromuscular/metabolismo , Profilinas/biossíntese , Profilinas/genética , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/terapia , Transdução Genética
6.
J Cell Biol ; 198(6): 1025-37, 2012 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-22986496

RESUMO

T cell antigen receptor-proximal signaling components, Rho-family GTPases, and formin proteins DIA1 and FMNL1 have been implicated in centrosome reorientation to the immunological synapse of T lymphocytes. However, the role of these molecules in the reorientation process is not yet defined. Here we find that a subset of microtubules became rapidly stabilized and that their α-tubulin subunit posttranslationally detyrosinated after engagement of the T cell receptor. Formation of stabilized, detyrosinated microtubules required the formin INF2, which was also found to be essential for centrosome reorientation, but it occurred independently of T cell receptor-induced massive tyrosine phosphorylation. The FH2 domain, which was mapped as the INF2 region involved in centrosome repositioning, was able to mediate the formation of stable, detyrosinated microtubules and to restore centrosome translocation in DIA1-, FMNL1-, Rac1-, and Cdc42-deficient cells. Further experiments indicated that microtubule stabilization was required for centrosome polarization. Our work identifies INF2 and stable, detyrosinated microtubules as central players in centrosome reorientation in T cells.


Assuntos
Centrossomo/metabolismo , Proteínas dos Microfilamentos/metabolismo , Microtúbulos/metabolismo , Linfócitos T/metabolismo , Tirosina/metabolismo , Actinas/genética , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem Celular Tumoral , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Forminas , Reguladores de Proteínas de Ligação ao GTP/genética , Reguladores de Proteínas de Ligação ao GTP/metabolismo , Humanos , Células Jurkat , Proteínas dos Microfilamentos/genética , Microtúbulos/genética , Fosforilação , Processamento de Proteína Pós-Traducional/genética , Estrutura Terciária de Proteína , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Transporte Proteico/genética , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Tirosina/genética , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
7.
J Cell Biol ; 189(7): 1087-96, 2010 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-20566685

RESUMO

The tumor suppressor protein adenomatous polyposis coli (APC) regulates cell protrusion and cell migration, processes that require the coordinated regulation of actin and microtubule dynamics. APC localizes in vivo to microtubule plus ends and actin-rich cortical protrusions, and has well-documented direct effects on microtubule dynamics. However, its potential effects on actin dynamics have remained elusive. Here, we show that the C-terminal "basic" domain of APC (APC-B) potently nucleates the formation of actin filaments in vitro and stimulates actin assembly in cells. Nucleation is achieved by a mechanism involving APC-B dimerization and recruitment of multiple actin monomers. Further, APC-B nucleation activity is synergistic with its in vivo binding partner, the formin mDia1. Together, APC-B and mDia1 overcome a dual cellular barrier to actin assembly imposed by profilin and capping protein. These observations define a new function for APC and support an emerging view of collaboration between distinct actin assembly-promoting factors with complementary activities.


Assuntos
Actinas/metabolismo , Proteína da Polipose Adenomatosa do Colo/fisiologia , Proteínas de Transporte/fisiologia , Proteínas de Capeamento de Actina , Animais , Proteínas Fetais/fisiologia , Forminas , Camundongos , Proteínas dos Microfilamentos/fisiologia , Células NIH 3T3 , Proteínas Nucleares/fisiologia , Profilinas , Multimerização Proteica , Transporte Proteico
8.
J Cell Biol ; 181(3): 523-36, 2008 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-18458159

RESUMO

A critical microtubule (MT) polarization event in cell migration is the Rho/mDia-dependent stabilization of a subset of MTs oriented toward the direction of migration. Although mDia nucleates actin filaments, it is unclear whether this or a separate activity of mDia underlies MT stabilization. We generated two actin mutants (K853A and I704A) in a constitutively active version of mDia2 containing formin homology domains 1 and 2 (FH1FH2) and found that they still induced stable MTs and bound to the MT TIP proteins EB1 and APC, which have also been implicated in MT stabilization. A dimerization-impaired mutant of mDia2 (W630A) also generated stable MTs in cells. We examined whether FH1FH2mDia2 had direct activity on MTs in vitro and found that it bound directly to MTs, stabilized MTs against cold- and dilution-induced disassembly, and reduced the rates of growth and shortening during MT assembly and disassembly, respectively. These results indicate that mDia2 has a novel MT stabilization activity that is separate from its actin nucleation activity.


Assuntos
Actinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , NADPH Desidrogenase/metabolismo , Actinas/genética , Proteína da Polipose Adenomatosa do Colo/genética , Proteína da Polipose Adenomatosa do Colo/metabolismo , Animais , Dimerização , Ácido Glutâmico/metabolismo , Humanos , Camundongos , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , NADPH Desidrogenase/genética , Células NIH 3T3 , Mutação Puntual , Ligação Proteica , Estrutura Quaternária de Proteína , Tubulina (Proteína)/metabolismo
9.
J Biol Chem ; 282(17): 12661-8, 2007 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-17293347

RESUMO

Adenomatous polyposis coli (APC) protein is a large tumor suppressor that is truncated in most colorectal cancers. The carboxyl-terminal third of APC protein mediates direct interactions with microtubules and the microtubule plus-end tracking protein EB1. In addition, APC has been localized to actin-rich regions of cells, but the mechanism and functional significance of this localization have remained unclear. Here we show that purified carboxyl-terminal basic domain of human APC protein (APC-basic) bound directly to and bundled actin filaments and associated with actin stress fibers in microinjected cells. Actin filaments and microtubules competed for binding to APC-basic, but APC-basic also could cross-link actin filaments and microtubules at specific concentrations, suggesting a possible role in cytoskeletal cross-talk. APC interactions with actin in vitro were inhibited by its ligand EB1, and co-microinjection of EB1 prevented APC association with stress fibers. Point mutations in EB1 that disrupted APC binding relieved the inhibition in vitro and restored APC localization to stress fibers in vivo, demonstrating that EB1-APC regulation is direct. Because tumor formation and metastasis involve coordinated changes in the actin and microtubule cytoskeletons, this novel function for APC and its regulation by EB1 may have direct implications for understanding the molecular basis of tumor suppression.


Assuntos
Citoesqueleto de Actina/química , Proteína da Polipose Adenomatosa do Colo/química , Fibras de Estresse/química , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Proteína da Polipose Adenomatosa do Colo/genética , Proteína da Polipose Adenomatosa do Colo/metabolismo , Proteína da Polipose Adenomatosa do Colo/farmacologia , Animais , Humanos , Camundongos , Células NIH 3T3 , Neoplasias/metabolismo , Mutação Puntual , Ligação Proteica/genética , Estrutura Terciária de Proteína/genética , Fibras de Estresse/genética , Fibras de Estresse/metabolismo
10.
EMBO J ; 21(23): 6377-86, 2002 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-12456645

RESUMO

The biogenesis of the cytoskeletal proteins actin and tubulin involves interaction of nascent chains of each of the two proteins with the oligomeric protein prefoldin (PFD) and their subsequent transfer to the cytosolic chaperonin CCT (chaperonin containing TCP-1). Here we show by electron microscopy that eukaryotic PFD, which has a similar structure to its archaeal counterpart, interacts with unfolded actin along the tips of its projecting arms. In its PFD-bound state, actin seems to acquire a conformation similar to that adopted when it is bound to CCT. Three-dimensional reconstruction of the CCT:PFD complex based on cryoelectron microscopy reveals that PFD binds to each of the CCT rings in a unique conformation through two specific CCT subunits that are placed in a 1,4 arrangement. This defines the phasing of the CCT rings and suggests a handoff mechanism for PFD.


Assuntos
Actinas/metabolismo , Chaperoninas/metabolismo , Chaperonas Moleculares/metabolismo , Animais , Bovinos , Chaperonina com TCP-1 , Masculino , Methanobacterium/química , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/ultraestrutura , Dobramento de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA