Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Blood Adv ; 6(7): 2373-2387, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35061886

RESUMO

Philadelphia-like (Ph-like) acute lymphoblastic leukemia (ALL) is a high-risk subtype of B-cell ALL characterized by a gene expression profile resembling Philadelphia chromosome-positive ALL (Ph+ ALL) in the absence of BCR-ABL1. Tyrosine kinase-activating fusions, some involving ABL1, are recurrent drivers of Ph-like ALL and are targetable with tyrosine kinase inhibitors (TKIs). We identified a rare instance of SFPQ-ABL1 in a child with Ph-like ALL. SFPQ-ABL1 expressed in cytokine-dependent cell lines was sufficient to transform cells and these cells were sensitive to ABL1-targeting TKIs. In contrast to BCR-ABL1, SFPQ-ABL1 localized to the nuclear compartment and was a weaker driver of cellular proliferation. Phosphoproteomics analysis showed upregulation of cell cycle, DNA replication, and spliceosome pathways, and downregulation of signal transduction pathways, including ErbB, NF-κB, vascular endothelial growth factor (VEGF), and MAPK signaling in SFPQ-ABL1-expressing cells compared with BCR-ABL1-expressing cells. SFPQ-ABL1 expression did not activate phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling and was associated with phosphorylation of G2/M cell cycle proteins. SFPQ-ABL1 was sensitive to navitoclax and S-63845 and promotes cell survival by maintaining expression of Mcl-1 and Bcl-xL. SFPQ-ABL1 has functionally distinct mechanisms by which it drives ALL, including subcellular localization, proliferative capacity, and activation of cellular pathways. These findings highlight the role that fusion partners have in mediating the function of ABL1 fusions.


Assuntos
Fosfatidilinositol 3-Quinases , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular
2.
Blood Adv ; 4(5): 930-942, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32150610

RESUMO

Acute lymphoblastic leukemia (ALL) is the most common childhood malignancy, and implementation of risk-adapted therapy has been instrumental in the dramatic improvements in clinical outcomes. A key to risk-adapted therapies includes the identification of genomic features of individual tumors, including chromosome number (for hyper- and hypodiploidy) and gene fusions, notably ETV6-RUNX1, TCF3-PBX1, and BCR-ABL1 in B-cell ALL (B-ALL). RNA-sequencing (RNA-seq) of large ALL cohorts has expanded the number of recurrent gene fusions recognized as drivers in ALL, and identification of these new entities will contribute to refining ALL risk stratification. We used RNA-seq on 126 ALL patients from our clinical service to test the utility of including RNA-seq in standard-of-care diagnostic pipelines to detect gene rearrangements and IKZF1 deletions. RNA-seq identified 86% of rearrangements detected by standard-of-care diagnostics. KMT2A (MLL) rearrangements, although usually identified, were the most commonly missed by RNA-seq as a result of low expression. RNA-seq identified rearrangements that were not detected by standard-of-care testing in 9 patients. These were found in patients who were not classifiable using standard molecular assessment. We developed an approach to detect the most common IKZF1 deletion from RNA-seq data and validated this using an RQ-PCR assay. We applied an expression classifier to identify Philadelphia chromosome-like B-ALL patients. T-ALL proved a rich source of novel gene fusions, which have clinical implications or provide insights into disease biology. Our experience shows that RNA-seq can be implemented within an individual clinical service to enhance the current molecular diagnostic risk classification of ALL.


Assuntos
Proteínas de Fusão Oncogênica , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Rearranjo Gênico , Genômica , Humanos , Proteínas de Fusão Oncogênica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Análise de Sequência de RNA
3.
Pediatr Blood Cancer ; 66(10): e27897, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31250523

RESUMO

We report two patients with leukaemia driven by the rare CNTRL-FGFR1 fusion oncogene. This fusion arises from a t(8;9)(p12;q33) translocation, and is a rare driver of biphenotypic leukaemia in children. We used RNA sequencing to report novel features of expressed CNTRL-FGFR1, including CNTRL-FGFR1 fusion alternative splicing. From this knowledge, we designed and tested a Droplet Digital PCR assay that detects CNTRL-FGFR1 expression to approximately one cell in 100 000 using fusion breakpoint-specific primers and probes. We also utilised cell-line models to show that effective tyrosine kinase inhibitors, which may be included in treatment regimens for this disease, are only those that block FGFR1 phosphorylation.


Assuntos
Proteínas de Ciclo Celular/genética , Leucemia/genética , Leucemia/terapia , Terapia de Alvo Molecular/métodos , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Criança , Humanos , Lactente , Masculino , Fusão Oncogênica , Proteínas de Fusão Oncogênica/genética , Reação em Cadeia da Polimerase/métodos , Inibidores de Proteínas Quinases/uso terapêutico
4.
J Exp Biol ; 215(Pt 7): 1218-30, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22399668

RESUMO

The cystic fibrosis transmembrane conductance regulator (CFTR) is central to anion secretion in both the possum and eutherian small intestine. Here, we investigated its role in the possum proximal colon, which has novel transport properties compared with the eutherian proximal colon. Despite considerable CFTR expression, high doses of the CFTR activator forskolin (EC(50)≈10 µmol l(-1)) were required for a modest, CFTR-dependent increase in short-circuit current (I(sc)) in the proximal colon. Presumably, this is because CFTR is restricted to the apical membrane of a small population of CFTR high expresser (CHE) cells in the surface and upper crypt epithelium. Furthermore, although the forskolin-stimulated I(sc) was dependent on serosal Na(+), Cl(-) and HCO(3)(-), consistent with anion secretion, inhibition of the basolateral Na-K-2Cl(-) (NKCC1) or Na-HCO(3) (pNBCe1) cotransporters did not prevent it. Therefore, although NKCC1 and pNBCe1 are expressed in the colonic epithelium they do not appear to be expressed in CHE cells. At low doses (IC(50)≈1 µmol l(-1)), forskolin also decreased the transepithelial conductance (G(T)) of the colon through inhibition of a 4,4'-diisothiocyano-2,2'-stilbenedisulphonic acid-sensitive anion conductance in the basolateral membrane of the CHE cells. This conductance is arranged in series with CFTR in the CHE cells and, therefore, the CHE cells provide a transepithelial Cl(-) conductance for passive Cl(-) absorption across the epithelium. Inhibition of the basolateral Cl(-) conductance of the CHE cells by forskolin will inhibit Na(+) absorption by restricting the movement of its counter-ion Cl(-), assisting in the conversion of the tissue from an absorptive to a secretory state.


Assuntos
Cloretos/metabolismo , Colforsina/farmacologia , Colo/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/citologia , Ativação do Canal Iônico/efeitos dos fármacos , Trichosurus/metabolismo , Ácido 4,4'-Di-Isotiocianoestilbeno-2,2'-Dissulfônico/farmacologia , Amilorida/farmacologia , Animais , Western Blotting , Colo/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Modelos Biológicos , Nitrobenzoatos/farmacologia , Transporte Proteico/efeitos dos fármacos , Simportadores de Sódio-Bicarbonato/metabolismo , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Membro 2 da Família 12 de Carreador de Soluto , Soluções
5.
J Exp Biol ; 214(Pt 11): 1943-54, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21562182

RESUMO

In eutherian mammals, fluid secretion is essential for intestinal function. This is driven by electrogenic Cl(-) secretion, which involves a NaK2Cl cotransporter (NKCC1) in the enterocyte basolateral membrane and the cystic fibrosis transmembrane conductance regulator (CFTR) in the apical membrane. However, in the possum ileum, NKCC1 expression is low and secretagogues stimulate electrogenic HCO(3)(-) secretion driven by a basolateral NaHCO(3) cotransporter (pNBCe1). Here we investigated whether electrogenic anion secretion occurs in possum duodenum and jejunum and determined the role of CFTR in possum intestinal anion secretion. Prostaglandin E(2) (PGE(2)) and forskolin stimulated a large increase in ileal short-circuit current (I(sc)), consistent with electrogenic HCO(3)(-) secretion, but had little effect on the duodenal and jejunal I(sc). Furthermore, 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) and N-(2-naphthalenyl)-[(3,5-dibromo-2,4-dihydroxyphenyl)methylene]glycine hydrazide (GlyH101) inhibited cloned possum CFTR in cultured cells and the PGE(2)-stimulated ileal I(sc), implicating CFTR in ileal HCO(3)(-) secretion. Consistent with this, CFTR is expressed in the apical membrane of ileal crypt and lower villous cells, which also express pNBCe1 in the basolateral membrane. In contrast, duodenal and jejunal CFTR expression is low relative to the ileum. Jejunal pNBCe1 expression is also low, whereas duodenal and ileal pNBCe1 expression are comparable. All regions have low NKCC1 expression. These results indicate that cAMP-dependent electrogenic Cl(-) secretion does not occur in the possum small intestine because of the absence of CFTR and NKCC1. Furthermore, CFTR functions as the apical anion conductance associated with HCO(3)(-) secretion and its distribution limits electrogenic HCO(3)(-) secretion to the ileum.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Íleo/metabolismo , Trichosurus/metabolismo , Animais , Ânions/metabolismo , Duodeno/metabolismo , Jejuno/metabolismo
6.
J Exp Biol ; 212(Pt 16): 2645-55, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19648410

RESUMO

Fluid secretion is essential for intestinal function and, in eutherian mammals, is driven by electrogenic Cl(-) transport, which is dependent upon a bumetanide-sensitive, basolateral Na(+)/K(+)/2 Cl(-) cotransporter, NKCC1. However, ileal secretion in the brushtail possum, a marsupial, involves a fundamentally different process, since NKCC1 expression is low in this tissue and the secretagogue-induced short circuit current (I(sc)) is insensitive to bumetanide. In view of these differences we have investigated the basis of the secretory response of the possum ileum. In the Ussing chamber the secretory I(sc) is independent of Cl(-) but dependent upon Na(+) and serosal HCO(3)(-)/CO(2), suggesting that secretagogues stimulate electrogenic HCO(3)(-) secretion. In agreement with this, serosal DIDS (4,4'-diisothiocyano-stilbene-2,2'-disulfonate; 1 mmol l(-1)) inhibited the secretory response. However, acetazolamide (1 mmol l(-1)) and serosal amiloride (1 mmol l(-1)) had little effect, indicating that HCO(3)(-) secretion is driven by HCO(3)(-) transport from the serosal solution into the cell, rather than hydration of CO(2) by carbonic anhydrase. Consistent with this the pancreatic variant of the electrogenic Na(+)/HCO(3)(-) cotransporter (pNBC) is highly expressed in the ileal epithelium and is located in the basolateral membrane of the epithelial cells, predominantly in the mid region of the villi, with lower levels of expression in the crypts and no expression in the villous tips. We conclude that the secretory response of the possum ileum involves electrogenic HCO(3)(-) secretion driven by a basolateral pNBC and that the ileal HCO(3)(-) secretion is associated with a specialised function of the possum ileum, most probably related to hindgut fermentation.


Assuntos
Bicarbonatos/metabolismo , Íleo/fisiologia , Simportadores de Sódio-Bicarbonato/fisiologia , Sódio/metabolismo , Trichosurus/fisiologia , Animais , Membrana Celular/fisiologia , DNA Complementar/genética , Células Epiteliais/fisiologia , Regulação da Expressão Gênica , Rim/fisiologia , Camundongos , Camundongos Endogâmicos CFTR/genética , Camundongos Knockout , Pâncreas/fisiologia , Isoformas de Proteínas/genética , Simportadores de Sódio-Bicarbonato/genética , Simportadores de Cloreto de Sódio-Potássio/genética , Membro 2 da Família 12 de Carreador de Soluto
7.
Gen Comp Endocrinol ; 132(1): 171-9, 2003 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-12765657

RESUMO

Guanylin and uroguanylin are peptides that activate guanylyl cyclase C (GC-C) receptors in the intestine and kidney, which causes an increase in the excretion of salt and water. The Spinifex hopping mouse, Notomys alexis, is a desert rodent that can survive for extended periods without free access to water and it was hypothesised that to conserve water, the expression of guanylin, uroguanylin, and GC-C would be down-regulated to reduce the excretion of water in urine and faeces. Accordingly, this study examined the expression of guanylin, uroguanylin, and GC-C mRNA in Notomys under normal (access to water) and water-deprived conditions. Initially, guanylin and uroguanylin cDNAs encoding the full open reading frame were cloned and sequenced. A PCR analysis showed guanylin and uroguanylin mRNA expression in the small intestine, caecum, proximal and distal colon, heart, and kidney. In addition, a partial GC-C cDNA was obtained and GC-C mRNA expression was demonstrated in the proximal and distal colon, but not the kidney. Subsequently, a semi-quantitative PCR method showed that water deprivation in Notomys caused a significant increase in guanylin and uroguanylin mRNA expression in the distal colon, and in guanylin and GC-C mRNA expression in the proximal colon. No significant difference in guanylin and uroguanylin mRNA expression was observed in the kidney. The results of this study indicate that there is, in fact, an up-regulation of the colonic guanylin system in Notomys after 7 days of water deprivation.


Assuntos
Adenilil Ciclases/genética , Clonagem Molecular , Hormônios Gastrointestinais/genética , Muridae/metabolismo , Peptídeos/genética , RNA Mensageiro/metabolismo , Sequência de Aminoácidos/genética , Animais , Sequência de Bases/genética , DNA Complementar/genética , Mucosa Intestinal/metabolismo , Isoenzimas/genética , Rim/metabolismo , Dados de Sequência Molecular , Muridae/genética , Miocárdio/metabolismo , Peptídeos Natriuréticos , Privação de Água/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA