Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Circulation ; 146(15): 1123-1134, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36154167

RESUMO

BACKGROUND: Acute myocarditis is an inflammatory condition that may herald the onset of dilated cardiomyopathy (DCM) or arrhythmogenic cardiomyopathy (ACM). We investigated the frequency and clinical consequences of DCM and ACM genetic variants in a population-based cohort of patients with acute myocarditis. METHODS: This was a population-based cohort of 336 consecutive patients with acute myocarditis enrolled in London and Maastricht. All participants underwent targeted DNA sequencing for well-characterized cardiomyopathy-associated genes with comparison to healthy controls (n=1053) sequenced on the same platform. Case ascertainment in England was assessed against national hospital admission data. The primary outcome was all-cause mortality. RESULTS: Variants that would be considered pathogenic if found in a patient with DCM or ACM were identified in 8% of myocarditis cases compared with <1% of healthy controls (P=0.0097). In the London cohort (n=230; median age, 33 years; 84% men), patients were representative of national myocarditis admissions (median age, 32 years; 71% men; 66% case ascertainment), and there was enrichment of rare truncating variants (tv) in ACM-associated genes (3.1% of cases versus 0.4% of controls; odds ratio, 8.2; P=0.001). This was driven predominantly by DSP-tv in patients with normal LV ejection fraction and ventricular arrhythmia. In Maastricht (n=106; median age, 54 years; 61% men), there was enrichment of rare truncating variants in DCM-associated genes, particularly TTN-tv, found in 7% (all with left ventricular ejection fraction <50%) compared with 1% in controls (odds ratio, 3.6; P=0.0116). Across both cohorts over a median of 5.0 years (interquartile range, 3.9-7.8 years), all-cause mortality was 5.4%. Two-thirds of deaths were cardiovascular, attributable to worsening heart failure (92%) or sudden cardiac death (8%). The 5-year mortality risk was 3.3% in genotype-negative patients versus 11.1% for genotype-positive patients (Padjusted=0.08). CONCLUSIONS: We identified DCM- or ACM-associated genetic variants in 8% of patients with acute myocarditis. This was dominated by the identification of DSP-tv in those with normal left ventricular ejection fraction and TTN-tv in those with reduced left ventricular ejection fraction. Despite differences between cohorts, these variants have clinical implications for treatment, risk stratification, and family screening. Genetic counseling and testing should be considered in patients with acute myocarditis to help reassure the majority while improving the management of those with an underlying genetic variant.


Assuntos
Cardiomiopatia Dilatada , Miocardite , Adulto , Cardiomiopatia Dilatada/genética , Feminino , Coração , Humanos , Masculino , Pessoa de Meia-Idade , Miocardite/diagnóstico , Miocardite/genética , Volume Sistólico , Função Ventricular Esquerda
2.
Science ; 377(6606): eabo1984, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35926050

RESUMO

Pathogenic variants in genes that cause dilated cardiomyopathy (DCM) and arrhythmogenic cardiomyopathy (ACM) convey high risks for the development of heart failure through unknown mechanisms. Using single-nucleus RNA sequencing, we characterized the transcriptome of 880,000 nuclei from 18 control and 61 failing, nonischemic human hearts with pathogenic variants in DCM and ACM genes or idiopathic disease. We performed genotype-stratified analyses of the ventricular cell lineages and transcriptional states. The resultant DCM and ACM ventricular cell atlas demonstrated distinct right and left ventricular responses, highlighting genotype-associated pathways, intercellular interactions, and differential gene expression at single-cell resolution. Together, these data illuminate both shared and distinct cellular and molecular architectures of human heart failure and suggest candidate therapeutic targets.


Assuntos
Displasia Arritmogênica Ventricular Direita , Cardiomiopatia Dilatada , Insuficiência Cardíaca , Análise de Célula Única , Transcriptoma , Displasia Arritmogênica Ventricular Direita/genética , Atlas como Assunto , Cardiomiopatia Dilatada/genética , Núcleo Celular/genética , Insuficiência Cardíaca/genética , Ventrículos do Coração , Humanos , RNA-Seq
3.
Biochem J ; 479(3): 401-424, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35147166

RESUMO

The extracellular signal-regulated kinase 1/2 (ERK1/2) cascade promotes cardiomyocyte hypertrophy and is cardioprotective, with the three RAF kinases forming a node for signal integration. Our aims were to determine if BRAF is relevant for human heart failure, whether BRAF promotes cardiomyocyte hypertrophy, and if Type 1 RAF inhibitors developed for cancer (that paradoxically activate ERK1/2 at low concentrations: the 'RAF paradox') may have the same effect. BRAF was up-regulated in heart samples from patients with heart failure compared with normal controls. We assessed the effects of activated BRAF in the heart using mice with tamoxifen-activated Cre for cardiomyocyte-specific knock-in of the activating V600E mutation into the endogenous gene. We used echocardiography to measure cardiac dimensions/function. Cardiomyocyte BRAFV600E induced cardiac hypertrophy within 10 d, resulting in increased ejection fraction and fractional shortening over 6 weeks. This was associated with increased cardiomyocyte size without significant fibrosis, consistent with compensated hypertrophy. The experimental Type 1 RAF inhibitor, SB590885, and/or encorafenib (a RAF inhibitor used clinically) increased ERK1/2 phosphorylation in cardiomyocytes, and promoted hypertrophy, consistent with a 'RAF paradox' effect. Both promoted cardiac hypertrophy in mouse hearts in vivo, with increased cardiomyocyte size and no overt fibrosis. In conclusion, BRAF potentially plays an important role in human failing hearts, activation of BRAF is sufficient to induce hypertrophy, and Type 1 RAF inhibitors promote hypertrophy via the 'RAF paradox'. Cardiac hypertrophy resulting from these interventions was not associated with pathological features, suggesting that Type 1 RAF inhibitors may be useful to boost cardiomyocyte function.


Assuntos
Cardiomegalia/patologia , Sistema de Sinalização das MAP Quinases/fisiologia , Miócitos Cardíacos/patologia , Proteínas Proto-Oncogênicas B-raf/fisiologia , Animais , Carbamatos/farmacologia , Carbamatos/toxicidade , Cardiomegalia/metabolismo , Tamanho Celular/efeitos dos fármacos , Células Cultivadas , Dimerização , Técnicas de Introdução de Genes , Insuficiência Cardíaca/patologia , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação de Sentido Incorreto , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Mutação Puntual , Conformação Proteica/efeitos dos fármacos , Mapeamento de Interação de Proteínas , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas c-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-raf/biossíntese , Ratos , Ratos Sprague-Dawley , Sulfonamidas/farmacologia , Sulfonamidas/toxicidade
4.
Nat Commun ; 11(1): 2523, 2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32461616

RESUMO

Upstream open reading frames (uORFs) are tissue-specific cis-regulators of protein translation. Isolated reports have shown that variants that create or disrupt uORFs can cause disease. Here, in a systematic genome-wide study using 15,708 whole genome sequences, we show that variants that create new upstream start codons, and variants disrupting stop sites of existing uORFs, are under strong negative selection. This selection signal is significantly stronger for variants arising upstream of genes intolerant to loss-of-function variants. Furthermore, variants creating uORFs that overlap the coding sequence show signals of selection equivalent to coding missense variants. Finally, we identify specific genes where modification of uORFs likely represents an important disease mechanism, and report a novel uORF frameshift variant upstream of NF2 in neurofibromatosis. Our results highlight uORF-perturbing variants as an under-recognised functional class that contribute to penetrant human disease, and demonstrate the power of large-scale population sequencing data in studying non-coding variant classes.


Assuntos
Regiões 5' não Traduzidas , Variação Genética , Mutação com Perda de Função , Proteínas/genética , Sequência de Bases , Genoma Humano , Humanos , Fases de Leitura Aberta
5.
Circulation ; 140(1): 31-41, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-30987448

RESUMO

BACKGROUND: Cancer therapy-induced cardiomyopathy (CCM) is associated with cumulative drug exposures and preexisting cardiovascular disorders. These parameters incompletely account for substantial interindividual susceptibility to CCM. We hypothesized that rare variants in cardiomyopathy genes contribute to CCM. METHODS: We studied 213 patients with CCM from 3 cohorts: retrospectively recruited adults with diverse cancers (n=99), prospectively phenotyped adults with breast cancer (n=73), and prospectively phenotyped children with acute myeloid leukemia (n=41). Cardiomyopathy genes, including 9 prespecified genes, were sequenced. The prevalence of rare variants was compared between CCM cohorts and The Cancer Genome Atlas participants (n=2053), healthy volunteers (n=445), and an ancestry-matched reference population. Clinical characteristics and outcomes were assessed and stratified by genotypes. A prevalent CCM genotype was modeled in anthracycline-treated mice. RESULTS: CCM was diagnosed 0.4 to 9 years after chemotherapy; 90% of these patients received anthracyclines. Adult patients with CCM had cardiovascular risk factors similar to the US population. Among 9 prioritized genes, patients with CCM had more rare protein-altering variants than comparative cohorts ( P≤1.98e-04). Titin-truncating variants (TTNtvs) predominated, occurring in 7.5% of patients with CCM versus 1.1% of The Cancer Genome Atlas participants ( P=7.36e-08), 0.7% of healthy volunteers ( P=3.42e-06), and 0.6% of the reference population ( P=5.87e-14). Adult patients who had CCM with TTNtvs experienced more heart failure and atrial fibrillation ( P=0.003) and impaired myocardial recovery ( P=0.03) than those without. Consistent with human data, anthracycline-treated TTNtv mice and isolated TTNtv cardiomyocytes showed sustained contractile dysfunction unlike wild-type ( P=0.0004 and P<0.002, respectively). CONCLUSIONS: Unrecognized rare variants in cardiomyopathy-associated genes, particularly TTNtvs, increased the risk for CCM in children and adults, and adverse cardiac events in adults. Genotype, along with cumulative chemotherapy dosage and traditional cardiovascular risk factors, improves the identification of patients who have cancer at highest risk for CCM. CLINICAL TRIAL REGISTRATION: URL: https://www.clinicaltrials.gov . Unique identifiers: NCT01173341; AAML1031; NCT01371981.


Assuntos
Antineoplásicos/efeitos adversos , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/genética , Variação Genética/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Adulto , Idoso , Animais , Cardiomiopatias/epidemiologia , Estudos de Coortes , Feminino , Variação Genética/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Neoplasias/epidemiologia , Estudos Prospectivos , Estudos Retrospectivos
6.
Circ Cardiovasc Genet ; 8(5): 643-52, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26175529

RESUMO

BACKGROUND: Mutations in sarcomeric and cytoskeletal proteins are a major cause of hereditary cardiomyopathies, but our knowledge remains incomplete as to how the genetic defects execute their effects. METHODS AND RESULTS: We used cysteine and glycine-rich protein 3, a known cardiomyopathy gene, in a yeast 2-hybrid screen and identified zinc-finger and BTB domain-containing protein 17 (ZBTB17) as a novel interacting partner. ZBTB17 is a transcription factor that contains the peak association signal (rs10927875) at the replicated 1p36 cardiomyopathy locus. ZBTB17 expression protected cardiac myocytes from apoptosis in vitro and in a mouse model with cardiac myocyte-specific deletion of Zbtb17, which develops cardiomyopathy and fibrosis after biomechanical stress. ZBTB17 also regulated cardiac myocyte hypertrophy in vitro and in vivo in a calcineurin-dependent manner. CONCLUSIONS: We revealed new functions for ZBTB17 in the heart, a transcription factor that may play a role as a novel cardiomyopathy gene.


Assuntos
Cardiomiopatias/genética , Insuficiência Cardíaca/genética , Proteínas Nucleares/genética , Animais , Proteínas de Ligação a DNA , Coração/fisiologia , Humanos , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/fisiologia , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo , Camundongos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Proteínas Nucleares/fisiologia , Proteínas Inibidoras de STAT Ativados/genética , Proteínas Inibidoras de STAT Ativados/fisiologia , Ratos , Estresse Fisiológico , Técnicas de Cultura de Tecidos , Ubiquitina-Proteína Ligases
7.
Am J Physiol Lung Cell Mol Physiol ; 308(12): L1274-85, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26078397

RESUMO

Oxidant-mediated tissue injury is key to the pathogenesis of acute lung injury. Glutathione-S-transferases (GSTs) are important detoxifying enzymes that catalyze the conjugation of glutathione with toxic oxidant compounds and are associated with acute and chronic inflammatory lung diseases. We hypothesized that attenuation of cellular GST enzymes would augment intracellular oxidative and metabolic stress and induce lung cell injury. Treatment of murine lung epithelial cells with GST inhibitors, ethacrynic acid (EA), and caffeic acid compromised lung epithelial cell viability in a concentration-dependent manner. These inhibitors also potentiated cell injury induced by hydrogen peroxide (H2O2), tert-butyl-hydroperoxide, and hypoxia and reoxygenation (HR). SiRNA-mediated attenuation of GST-π but not GST-µ expression reduced cell viability and significantly enhanced stress (H2O2/HR)-induced injury. GST inhibitors also induced intracellular oxidative stress (measured by dihydrorhodamine 123 and dichlorofluorescein fluorescence), caused alterations in overall intracellular redox status (as evidenced by NAD(+)/NADH ratios), and increased protein carbonyl formation. Furthermore, the antioxidant N-acetylcysteine completely prevented EA-induced oxidative stress and cytotoxicity. Whereas EA had no effect on mitochondrial energetics, it significantly altered cellular metabolic profile. To explore the physiological impact of these cellular events, we used an ex vivo mouse-isolated perfused lung model. Supplementation of perfusate with EA markedly affected lung mechanics and significantly increased lung permeability. The results of our combined genetic, pharmacological, and metabolic studies on multiple platforms suggest the importance of GST enzymes, specifically GST-π, in the cellular and whole lung response to acute oxidative and metabolic stress. These may have important clinical implications.


Assuntos
Ácidos Cafeicos/farmacologia , Células Epiteliais/enzimologia , Ácido Etacrínico/farmacologia , Glutationa Transferase/antagonistas & inibidores , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/enzimologia , Estresse Oxidativo , Animais , Antioxidantes/farmacologia , Western Blotting , Permeabilidade da Membrana Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Glutationa/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Peróxido de Hidrogênio/metabolismo , Técnicas Imunoenzimáticas , Lesão Pulmonar/patologia , Metabolômica , Camundongos , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
Artigo em Inglês | MEDLINE | ID: mdl-24940686

RESUMO

Recent findings suggest that inhibition of AMP-deaminase (AMPD) could be effective therapeutic strategy in heart disease associated with cardiac ischemia. To establish experimental model to study protective mechanisms of AMPD inhibition we developed conditional, cardiac specific knock-outs in Cre recombinase system. AMPD3 floxed mice were crossed with Mer-Cre-Mer mice. Tamoxifen was injected to induce Cre recombinase. After two weeks, hearts, skeletal muscle, liver, kidney, and blood were collected and activities of AMPD and related enzymes were analyzed using HPLC-based procedure. We demonstrate loss of more than 90% of cardiac AMPD activity in the heart of AMPD3-/-mice while other enzymes of nucleotide metabolism such as adenosine deaminase, purine nucleoside phosphorylase were not affected. Surprisingly, activity of AMPD was also reduced in the erythrocytes and in the kidney by 20%-30%. No change of AMPD activity was observed in the skeletal muscle and the liver.


Assuntos
AMP Desaminase/deficiência , AMP Desaminase/genética , Técnicas de Inativação de Genes , Miocárdio/enzimologia , Animais , Deleção de Genes , Camundongos , Especificidade de Órgãos
9.
Cardiovasc Drugs Ther ; 28(2): 183-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24431031

RESUMO

Nucleotide metabolism and signalling is directly linked to myocardial function. Therefore analysis how diversity of genes coding nucleotide metabolism related proteins affects clinical progress of heart disease could provide valuable information for development of new treatments. Several studies identified that polymorphism of AMP deaminase 1 gene (AMPD1), in particular the common C34T variant of this gene was found to benefit patients with heart failure and ischemic heart disease. However, these findings were inconsistent in subsequent studies. This prompted our detailed analysis of heart transplant recipients that revealed diverse effect: improved early postoperative cardiac function associated with C34T mutation in donors, but worse 1-year survival. Our other studies on the metabolic impact of AMPD1 C34T mutation revealed decrease in AMPD activity, increased production of adenosine and de-inhibition of AMP regulated protein kinase. Thus, genetic, clinical and biochemical studies revealed that while long term attenuation of AMPD activity could be deleterious, transient inhibition of AMPD activity before acute cardiac injury is protective. We suggest therefore that pharmacological inhibition of AMP deaminase before transient ischemic event such as during ischemic heart disease or cardiac surgery could provide therapeutic benefit.


Assuntos
AMP Desaminase/genética , Predisposição Genética para Doença/genética , Cardiopatias/genética , Polimorfismo Genético/genética , Humanos
10.
PLoS One ; 8(1): e53137, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23326389

RESUMO

G-quadruplexes (G4s) are four-stranded DNA secondary structures, which are involved in a diverse range of biological processes. Although the anti-cancer potential of G4s in oncogene promoters has been thoroughly investigated, the functions of promoter G4s in non-cancer-related genes are not well understood. We have explored the possible regulatory roles of promoter G4s in cardiac function-related genes using both computational and a wide range of experimental approaches. According to our bioinformatics results, it was found that potential G4-forming sequences are particularly enriched in the transcription regulatory regions (TRRs) of cardiac function-related genes. Subsequently, the promoter of human cardiac troponin I (TnIc) was chosen as a model, and G4s found in this region were subjected to biophysical characterisations. The chromosome 19 specific minisatellite G4 sequence (MNSG4) and near transcription start site (TSS) G4 sequence (-80 G4) adopt anti-parallel and parallel structures respectively in 100 mM KCl, with stabilities comparable to those of oncogene G4s. It was also found that TnIc G4s act cooperatively as enhancers in gene expression regulation in HEK293 cells, when stabilised by a synthetic G4-binding ligand. This study provides the first evidence of the biological significance of promoter G4s in cardiac function-related genes. The feasibility of using a single ligand to target multiple G4s in a particular gene has also been discussed.


Assuntos
DNA/genética , Quadruplex G , Regiões Promotoras Genéticas/genética , Sequências Reguladoras de Ácido Nucleico/genética , Troponina I/genética , Encéfalo/metabolismo , Biologia Computacional/métodos , DNA/química , DNA/metabolismo , Regulação da Expressão Gênica , Genoma Humano/genética , Células HEK293 , Humanos , Cinética , Ligantes , Luciferases/genética , Luciferases/metabolismo , Pulmão/metabolismo , Repetições Minissatélites/genética , Modelos Genéticos , Miocárdio/metabolismo , Conformação de Ácido Nucleico , Termodinâmica , Sítio de Iniciação de Transcrição
11.
Nature ; 478(7367): 114-8, 2011 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-21979051

RESUMO

Left ventricular mass (LVM) is a highly heritable trait and an independent risk factor for all-cause mortality. So far, genome-wide association studies have not identified the genetic factors that underlie LVM variation, and the regulatory mechanisms for blood-pressure-independent cardiac hypertrophy remain poorly understood. Unbiased systems genetics approaches in the rat now provide a powerful complementary tool to genome-wide association studies, and we applied integrative genomics to dissect a highly replicated, blood-pressure-independent LVM locus on rat chromosome 3p. Here we identified endonuclease G (Endog), which previously was implicated in apoptosis but not hypertrophy, as the gene at the locus, and we found a loss-of-function mutation in Endog that is associated with increased LVM and impaired cardiac function. Inhibition of Endog in cultured cardiomyocytes resulted in an increase in cell size and hypertrophic biomarkers in the absence of pro-hypertrophic stimulation. Genome-wide network analysis unexpectedly implicated ENDOG in fundamental mitochondrial processes that are unrelated to apoptosis. We showed direct regulation of ENDOG by ERR-α and PGC1α (which are master regulators of mitochondrial and cardiac function), interaction of ENDOG with the mitochondrial genome and ENDOG-mediated regulation of mitochondrial mass. At baseline, the Endog-deleted mouse heart had depleted mitochondria, mitochondrial dysfunction and elevated levels of reactive oxygen species, which were associated with enlarged and steatotic cardiomyocytes. Our study has further established the link between mitochondrial dysfunction, reactive oxygen species and heart disease and has uncovered a role for Endog in maladaptive cardiac hypertrophy.


Assuntos
Cardiomegalia/enzimologia , Cardiomegalia/patologia , Endodesoxirribonucleases/metabolismo , Mitocôndrias/metabolismo , Animais , Apoptose , Peso Corporal/genética , Cardiomegalia/genética , Cardiomegalia/fisiopatologia , Respiração Celular , Cromossomos de Mamíferos/genética , Cruzamentos Genéticos , Endodesoxirribonucleases/deficiência , Endodesoxirribonucleases/genética , Feminino , Regulação da Expressão Gênica , Genes Mitocondriais/genética , Hipertrofia Ventricular Esquerda/enzimologia , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Metabolismo dos Lipídeos , Masculino , Mitocôndrias/genética , Mitocôndrias/patologia , Tamanho do Órgão/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Locos de Características Quantitativas/genética , Proteínas de Ligação a RNA/metabolismo , Ratos , Ratos Endogâmicos , Espécies Reativas de Oxigênio/metabolismo , Receptores de Estrogênio/metabolismo , Fatores de Transcrição/metabolismo , Receptor ERRalfa Relacionado ao Estrogênio
12.
Circ Res ; 109(7): 758-69, 2011 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-21799151

RESUMO

RATIONALE: Telethonin (also known as titin-cap or t-cap) is a 19-kDa Z-disk protein with a unique ß-sheet structure, hypothesized to assemble in a palindromic way with the N-terminal portion of titin and to constitute a signalosome participating in the process of cardiomechanosensing. In addition, a variety of telethonin mutations are associated with the development of several different diseases; however, little is known about the underlying molecular mechanisms and telethonin's in vivo function. OBJECTIVE: Here we aim to investigate the role of telethonin in vivo and to identify molecular mechanisms underlying disease as a result of its mutation. METHODS AND RESULTS: By using a variety of different genetically altered animal models and biophysical experiments we show that contrary to previous views, telethonin is not an indispensable component of the titin-anchoring system, nor is deletion of the gene or cardiac specific overexpression associated with a spontaneous cardiac phenotype. Rather, additional titin-anchorage sites, such as actin-titin cross-links via α-actinin, are sufficient to maintain Z-disk stability despite the loss of telethonin. We demonstrate that a main novel function of telethonin is to modulate the turnover of the proapoptotic tumor suppressor p53 after biomechanical stress in the nuclear compartment, thus linking telethonin, a protein well known to be present at the Z-disk, directly to apoptosis ("mechanoptosis"). In addition, loss of telethonin mRNA and nuclear accumulation of this protein is associated with human heart failure, an effect that may contribute to enhanced rates of apoptosis found in these hearts. CONCLUSIONS: Telethonin knockout mice do not reveal defective heart development or heart function under basal conditions, but develop heart failure following biomechanical stress, owing at least in part to apoptosis of cardiomyocytes, an effect that may also play a role in human heart failure.


Assuntos
Insuficiência Cardíaca/metabolismo , Coração/fisiopatologia , Mecanotransdução Celular , Proteínas Musculares/deficiência , Miocárdio/metabolismo , Adaptação Fisiológica , Animais , Animais Geneticamente Modificados , Apoptose , Fenômenos Biomecânicos , Linhagem Celular Tumoral , Conectina , Modelos Animais de Doenças , Ecocardiografia , Fibrose , Genótipo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Camundongos , Camundongos Knockout , Proteínas Musculares/genética , Miocárdio/patologia , Fenótipo , Interferência de RNA , Ratos , Sarcômeros/metabolismo , Estresse Mecânico , Transfecção , Proteína Supressora de Tumor p53/metabolismo
13.
J Cardiovasc Transl Res ; 3(6): 688-95, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20577844

RESUMO

The ß(2)-selective adrenoreceptor agonist clenbuterol promotes both skeletal and cardiac muscle hypertrophy and is undergoing clinical trials in the treatment of muscle wasting and heart failure. We have previously demonstrated that clenbuterol induces a mild physiological ventricular hypertrophy in vivo with normal contractile function and without induction of α-skeletal muscle actin (αSkA), a marker of pathological hypertrophy. The mechanisms of this response remain poorly defined. In this study, we examine the direct action of clenbuterol on cardiocyte cultures in vitro. Clenbuterol treatment resulted in increased cell size of cardiac myocytes with increased protein accumulation and myofibrillar organisation characteristic of hypertrophic growth. Real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR) revealed elevated mRNA expression of ANP and brain natriuretic peptide (BNP) but without change in αSkA, consistent with physiological hypertrophic growth. Clenbuterol-treated cultures also showed elevated insulin-like growth factor I (IGF-1) mRNA and activation of the protein kinase Akt. Addition of either IGF-1 receptor-blocking antibodies or LY294002 in order to inhibit phosphatidylinositol 3-kinase, a downstream effector of the IGF-1 receptor, inhibited the hypertrophic response indicating that IGF-1 signalling is required. IGF-1 expression localised primarily to the minor population of cardiac fibroblasts present in the cardiocyte cultures. Together these data show that clenbuterol acts to induce mild cardiac hypertrophy in cardiac myocytes via paracrine signalling involving fibroblast-derived IGF-1.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/toxicidade , Cardiomegalia/induzido quimicamente , Clembuterol/toxicidade , Fibroblastos/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Comunicação Parácrina/efeitos dos fármacos , Actinas/genética , Animais , Animais Recém-Nascidos , Fator Natriurético Atrial/genética , Western Blotting , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Tamanho Celular/efeitos dos fármacos , Células Cultivadas , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Fator de Crescimento Insulin-Like I/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Peptídeo Natriurético Encefálico/genética , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Transfecção
14.
Transplantation ; 89(1): 75-82, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20061922

RESUMO

BACKGROUND: We hypothesized that genetic variation of ATP-binding cassette subfamily B member 1 (ABCB1) that encodes P-glycoprotein (involved in the uptake of cyclosporin A [CsA]) contributes to trough drug concentrations and thereby to CsA's immunosuppressive and toxic effects. METHODS: Three hundred thirty-seven adult heart transplant recipients were studied retrospectively. White recipients receiving CsA at month 3 and years 1 to 5 after transplantation (n=192, 168, 156, 130, 95, and 74, respectively) were then studied with respect to ABCB1 genotype or haplotype and CsA disposition. Genotyping was performed using a gel-based polymerase chain reaction method. Dose- and weight-adjusted CsA trough concentrations ([microg/L]/[mg/kg]), time to first endomyocardial biopsy-proven acute rejection episode (grade>or=3A), weaning from steroids at 1 year, and renal function at 1 year posttransplant were measured. RESULTS: An association between dose- and weight-adjusted CsA trough concentrations and ABCB1 haplotypes was found, with 12/1236, 21/2677, 26/3435 CC/GG/CC individuals having significantly higher concentrations than TT/TT/TT individuals at years 1 and 5 (68.9+/-26.9 vs. 54.9+/-19.5 and 70.6+/-35 vs. 50.0+/-12.2 [microg/L]/[mg/kg] P<0.05, respectively) There was no difference in the incidence of acute rejection, steroid weaning, or renal impairment between the genotype or haplotype groups. CONCLUSIONS: The association of ABCB1 12/1236, 21/2677, and 26/3435 CC/GG/CC haplotype with increased CsA dose- and weight-adjusted CsA trough concentrations in this group of adult white heart transplant recipients was not consistent over time and had no effect on the incidence of acute rejection or on the development of renal impairment.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/genética , Ciclosporina/uso terapêutico , Rejeição de Enxerto/epidemiologia , Transplante de Coração/imunologia , Polimorfismo Genético , Transportador 1 de Cassete de Ligação de ATP , Doença Aguda , Adolescente , Adulto , Idoso , Ciclosporina/farmacocinética , Feminino , Genótipo , Transplante de Coração/efeitos adversos , Humanos , Imunossupressores/farmacocinética , Imunossupressores/uso terapêutico , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Valor Preditivo dos Testes , Estudos Retrospectivos , Adulto Jovem
15.
Am J Cardiol ; 103(10): 1457-62, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19427446

RESUMO

The C34T T allele of the adenosine monophosphate deaminase-1 (AMPD1) gene has been associated with improved outcome in patients with cardiac dysfunction. We hypothesized that possession of this allele by donor hearts plays a role in the outcome of cardiac transplantation; 262 cardiac donors and 190 of their recipients were studied. AMPD1 C34T genotype was determined using 5' exonuclease chemistry. Requirement for inotropic agents before organ donation, 1-year post-transplantation survival, cause of death, and factors known to affect survival after transplantation were also studied. Multiple regression models for factors affecting survival were constructed. A significant yearly increase in frequency of the T allele in donors was noted (0.06 to 0.18 from 1994 to 1999). Donors with the CT or TT genotype required less inotropic support than those with the CC genotype (mean number of inotropes per donor with CT or TT genotype 0.27 compared with 0.47 per donor with CC genotype, n = 206, p = 0.03). Recipients of T-allele-carrying organs showed worse 1-year survival after transplantation (59% vs 79%, p <0.001). Excess deaths in these patients was due to early graft dysfunction (odds ratio for early graft dysfunction 6.6, 95% confidence interval 2 to 21.6, p = 0.0001). Multivariate analysis showed donor AMPD1 genotype, recipient age, and pretransplantation anemia to independently affect 1-year post-transplantation survival (adjusted hazard ratios 3.7, 1.06, and 2.6, respectively). In conclusion, possession of the AMPD1 T allele is associated with decreased inotropic requirements before heart donation. The incidence of early graft dysfunction, however, was significantly higher in recipients who received AMPD1 T-allele-possessing organs resulting in worse 1-year survival.


Assuntos
AMP Desaminase/genética , Transplante de Coração , Adolescente , Adulto , Alelos , Anemia/complicações , Morte Encefálica , Cardiotônicos/administração & dosagem , Causas de Morte , Criança , Pré-Escolar , Feminino , Rejeição de Enxerto , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Modelos de Riscos Proporcionais , Estudos Retrospectivos , Fatores de Risco , Taxa de Sobrevida , Doadores de Tecidos
16.
J Cardiovasc Transl Res ; 2(2): 182-90, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20559986

RESUMO

The purpose of this study was to determine the effects of chronic treatment with the beta 2 adrenergic receptor agonist clenbuterol on endothelial progenitor cells (EPC) in a well-characterized model of heart failure, the muscle LIM protein knockout (MLP(-/-)) mouse. MLP(-/-) mice were treated daily with clenbuterol (2 mg/kg) or saline subcutaneously for 6 weeks. Clenbuterol led to a 30% increase in CD31(+) cells in the bone marrow of MLP(-/-) heart failure mice (p < 0.004). Clenbuterol did not improve ejection fraction. Clenbuterol treatment in MLP(-/-) mice was associated with significant changes in the following circulating factors: tissue inhibitor of metalloproteinase-type 1, leukemia inhibitory factor 1, C-reactive protein, apolipoprotein A1, fibroblast growth factor 2, serum glutamic oxaloacetic transaminase, macrophage-derived chemokine, and monocyte chemoattractant protein-3. Clenbuterol treatment in the MLP(-/-) model of heart failure did not rescue heart function, yet did increase CD31(+) cells in the bone marrow. This is the first evidence that a beta 2 agonist increases EPC proliferation in the bone marrow in a preclinical model of heart failure.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2 , Agonistas Adrenérgicos beta/farmacologia , Biomarcadores/sangue , Cardiomiopatias/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Clembuterol/farmacologia , Células Endoteliais/efeitos dos fármacos , Miocárdio/patologia , Células-Tronco/efeitos dos fármacos , Agonistas Adrenérgicos beta/administração & dosagem , Animais , Apolipoproteína A-I/sangue , Aspartato Aminotransferases/sangue , Proteína C-Reativa/metabolismo , Carboxipeptidases A/sangue , Cardiomiopatias/sangue , Cardiomiopatias/genética , Cardiomiopatias/patologia , Cardiomiopatias/fisiopatologia , Quimiocina CCL22/sangue , Clembuterol/administração & dosagem , Modelos Animais de Doenças , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Fator 2 de Crescimento de Fibroblastos/sangue , Regulação da Expressão Gênica , Injeções Subcutâneas , Proteínas com Domínio LIM , Fator Inibidor de Leucemia/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Musculares/deficiência , Proteínas Musculares/genética , Miocárdio/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , RNA Mensageiro/metabolismo , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo , Células-Tronco/imunologia , Células-Tronco/metabolismo , Volume Sistólico , Fatores de Tempo , Inibidor Tecidual de Metaloproteinase-1/sangue , Função Ventricular Esquerda
17.
Cardiovasc Res ; 79(3): 472-80, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18375498

RESUMO

AIMS: The molecular mechanisms that regulate cardiomyocyte apoptosis and their role in human heart failure (HF) are uncertain. Expression of the apoptosis regulator p53 is governed by minute double minute 2 (MDM2), an E3 enzyme that targets p53 for ubiquitination and proteasomal processing, and by the deubiquitinating enzyme, herpesvirus-associated ubiquitin-specific protease (HAUSP), which rescues p53 by removing ubiquitin chains from it. Here, we examined whether elevated expression of p53 was associated with dysregulation of ubiquitin-proteasome system (UPS) components and activation of downstream effectors of apoptosis in human dilated cardiomyopathy (DCM). METHODS AND RESULTS: Left ventricular myocardial samples were obtained from patients with DCM (n = 12) or from non-failing (donor) hearts (n = 17). Western blotting and immunohistochemistry revealed that DCM tissues contained elevated levels of p53 and its regulators MDM2 and HAUSP (all P < 0.01) compared with non-failing hearts. DCM tissues also contained elevated levels of polyubiquitinated proteins and possessed enhanced 20S-proteasome chymotrypsin-like activities (P < 0.04) as measured in vitro using a fluorogenic substrate. DCM tissues contained activated caspases-9 and -3 (P < 0.001) and reduced expression of the caspase substrate PARP-1 (P < 0.05). Western blotting and immunohistochemistry revealed that DCM tissues contained elevated expression levels of caspase-3-activated DNAse (CAD; P < 0.001), which is a key effector of DNA fragmentation in apoptosis and also contained elevated expression of a potent inhibitor of CAD (ICAD-S; P < 0.01). CONCLUSION: Expression of p53 in human DCM is associated with dysregulation of UPS components, which are known to regulate p53 stability. Elevated p53 expression and caspase activation in DCM was not associated with activation of both CAD and its inhibitor, ICAD-S. Our findings are consistent with the concept that apoptosis may be interrupted and therefore potentially reversible in human HF.


Assuntos
Apoptose , Cardiomiopatia Dilatada/enzimologia , Miocárdio/enzimologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina/metabolismo , Adulto , Proteínas Reguladoras de Apoptose/metabolismo , Cardiomiopatia Dilatada/patologia , Caspase 3/metabolismo , Caspase 9/metabolismo , Fragmentação do DNA , Desoxirribonucleases/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Miocárdio/patologia , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Ubiquitina Tiolesterase/metabolismo , Peptidase 7 Específica de Ubiquitina , Regulação para Cima , Adulto Jovem
18.
Biochem Biophys Res Commun ; 371(4): 615-20, 2008 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-18413147

RESUMO

Side population cells have been found in various types of adult tissue including heart and are presumed to be tissue-specific stem/progenitor cells. In the present study, we confirmed the presence of cardiac side population (cSP) cells, which showed both the Hoechst 33342 efflux ability and ABCG2 expression, in adult murine heart. Flow cytometric analysis showed that more than half of cSP cells expressed the endothelial marker VE-cadherin or the smooth muscle markers, alpha-smooth muscle actin and desmin. In addition, immunohistochemical analysis demonstrated that ABCG2(+) cells were mainly localized within vascular walls. Quantitative RT-PCR analysis demonstrated that VE-cadherin(-) cSP cells progressively expressed Nkx2.5 and cardiac troponin T with time in culture. VE-cadherin(-) cSP cells also expressed mesodermal-mesenchymal-associated markers and differentiated into osteocytes and adipocytes. These results highlight the heterogeneic nature of cSP cells, consisting of vascular endothelial cells, smooth muscle cells, and mesenchymal stem/progenitor cells including potential cardiomyogenic cells.


Assuntos
Diferenciação Celular , Coração , Mioblastos Cardíacos/citologia , Mioblastos Cardíacos/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/análise , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Actinas/análise , Actinas/genética , Actinas/metabolismo , Animais , Benzimidazóis/metabolismo , Caderinas/análise , Caderinas/genética , Caderinas/metabolismo , Separação Celular , Células Cultivadas , Desmina/análise , Desmina/genética , Desmina/metabolismo , Proteína Homeobox Nkx-2.5 , Proteínas de Homeodomínio/análise , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mioblastos Cardíacos/química , Fatores de Transcrição/análise , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Troponina T/análise , Troponina T/genética , Troponina T/metabolismo
19.
Circulation ; 115(17): 2254-61, 2007 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17438152

RESUMO

BACKGROUND: Therapeutic efficacy of bone marrow (BM) cell injection for treating ischemic chronic heart failure has not been established. In addition, experimental data are lacking on arrhythmia occurrence after BM cell injection. We hypothesized that therapeutic efficacy and arrhythmia occurrence induced by BM cell injection may be affected by the cell delivery route. METHODS AND RESULTS: Three weeks after left coronary artery ligation, wild-type female rats were injected with 1x10(7) mononuclear BM cells derived from green fluorescent protein-transgenic male rats through either a direct intramyocardial or a retrograde intracoronary route. Both intramyocardial and intracoronary injection of BM cells demonstrated similar improvement in left ventricular ejection fraction measured by echocardiography and a similar graft size analyzed by real-time polymerase chain reaction for the Y chromosome-specific Sry gene. Noticeably, intramyocardial injection of BM cells induced frequent ventricular premature contractions (108+/-73 per hour at 7 days after BM cell injection), including multiform, consecutive ventricular premature contractions and ventricular tachycardia for the initial 14 days; intracoronary injection of BM cells and intramyocardial injection of phosphate-buffered saline rarely induced arrhythmias. Immunohistochemistry demonstrated that intramyocardial BM cell injection formed distinct cell clusters containing donor-derived cells and accumulated host-derived inflammatory cells in the infarct border zone, whereas intracoronary BM cell injection provided more homogeneous donor cell dissemination with less inflammation and without disrupting the native myocardial structure. CONCLUSIONS: BM cell injection is able to improve cardiac function in ischemic chronic heart failure but has a risk of arrhythmia occurrence when the intramyocardial route is used. Such arrhythmias may be prevented by using the intracoronary route.


Assuntos
Transplante de Medula Óssea/efeitos adversos , Transplante de Medula Óssea/métodos , Insuficiência Cardíaca/terapia , Isquemia Miocárdica/terapia , Taquicardia Ventricular/etiologia , Animais , Animais Geneticamente Modificados , Doença Crônica , Modelos Animais de Doenças , Feminino , Sobrevivência de Enxerto , Insuficiência Cardíaca/patologia , Injeções , Masculino , Isquemia Miocárdica/patologia , Miocárdio/patologia , Ratos , Ratos Sprague-Dawley , Taquicardia Ventricular/mortalidade
20.
Cell Mol Biol Lett ; 10(1): 135-49, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15809685

RESUMO

The proteins, spectrin and 4.1 confer support and resilience to animal cell membranes, and promote assembly of multimeric, membrane-bound signalling complexes. Protein 4.1 also plays important roles in tumour suppression and the regulation of cell proliferation. To assess relative tissue expression of the four genes encoding human protein 4.1, we measured mRNA levels using quantitative real-time polymerase chain reaction. We compared 4.1 expression with that of a major splice variant of spectrin, betaIISigma2 that has a shortened C-terminus lacking a pleckstrin homology domain. mRNA for 4.1R is four-fold higher in bone marrow than in tissues with the next highest prevalence: cerebellum, lung, testis and thymus. 4.1G mRNA is highly expressed in brain, spinal cord and testis; 4.1N in brain, spinal cord and adrenal gland; 4.1B in testis, brain, spinal cord, and kidney. Thus, 4.1N, 4.1B and 4.1G all show high accumulation in nervous tissues. mRNA for betaIISigma2-spectrin is ubiquitous, but most abundant in cardiac and nervous tissues. Comparative transcript abundance was analysed in heart and brain. betaIISigma2-spectrin was the most abundant transcript in heart with levels 5 fold greater than 4.1G or 4.1N and at least 9 fold greater than 4.1B. In brain, 4.1N was the most abundant transcript, with levels 2.4 fold greater than 4.1B and at least 4 fold greater than 4.1G or betaIISigma2-spectrin. 4.1R abundance was very low in both tissues. Whilst we expected that 4.1 mRNAs would feature highly in muscle and nerve, we note their high abundance in testis, indicating previously unsuspected functions in reproduction.


Assuntos
Proteínas Sanguíneas/genética , Proteínas Associadas aos Microtúbulos/genética , RNA Mensageiro/metabolismo , Espectrina/genética , Proteínas Sanguíneas/biossíntese , Medula Óssea/metabolismo , Sistema Nervoso Central/metabolismo , Proteínas do Citoesqueleto/biossíntese , Proteínas do Citoesqueleto/genética , Humanos , Masculino , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Proteínas dos Microfilamentos , Proteínas Associadas aos Microtúbulos/biossíntese , Miocárdio/metabolismo , Neuropeptídeos/biossíntese , Neuropeptídeos/genética , Especificidade de Órgãos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrina/biossíntese , Testículo/metabolismo , Proteínas Supressoras de Tumor/biossíntese , Proteínas Supressoras de Tumor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA