Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Life Sci ; 308: 120963, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36113731

RESUMO

AIMS: Metal complexes have ignited considerable interest in the field of chemotherapy after the serendipitous discovery of cisplatin but the severe toxicity of these platinum-based drugs compelled researchers to search for newer, more effective lesser toxic anticancer drugs. MATERIALS AND METHODS: Structural analysis is done by different physicochemical techniques including X-ray single crystallography. Toxicity study has been done in normal Swiss albino mice. MTT assay assessed cell viability. Apoptosis, cell cycle arrest, and cell proliferation were assessed by FACS using Annexin V-PI, PI, and CFSE staining respectively. Western blot quantifies protein expression. While cell migration was studied by wound healing assay. KEY FINDINGS: One-pot synthesis of a novel mononuclear cobalt(III)-Schiff base complex (1) (>99 % purity) and its complete characterization have been done. Cell viability assay showed that 1 (IC50 = 16.81 ± 1.33 µM) exhibits cytotoxicity at much lower concentration in comparison to oxaliplatin (IC50 = 31.4 ± 0.69 µM) against MCF-7 cells for 24 h of therapy without being overly toxic to human PBMCs (IC50 ≥ 60 µM). Additional in vitro studies demonstrated that 1 induces apoptosis via G2-M cell cycle arrest and reduces cell proliferation as well as cell migration in MCF-7 cells. In vivo subacute toxicity (28 days) and systemic chronic toxicity (40 days) studies were carried out in normal Swiss albino mice showed 1 is significantly nontoxic to the host. SIGNIFICANCE: The readily synthesizable, significantly nontoxic cobalt complex with appreciable anticancer activity implies that it might be an effective chemotherapeutic agent for new-age anti-tumor medication.


Assuntos
Antineoplásicos , Neoplasias da Mama , Complexos de Coordenação , Animais , Anexina A5/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose , Neoplasias da Mama/tratamento farmacológico , Ciclo Celular , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Cisplatino/farmacologia , Cobalto/farmacologia , Complexos de Coordenação/farmacologia , Feminino , Humanos , Células MCF-7 , Camundongos , Oxaliplatina/farmacologia , Bases de Schiff/farmacologia
2.
Food Funct ; 12(3): 1063-1078, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33443517

RESUMO

According to population-based studies, lung cancer has become one of the leading causes of death globally in males and is also rising in females at an alarming rate. The aim of this study was to exploit the inherent properties of eugenol to restrict the growth of cancer cells in a tobacco-related human carcinogen NDEA-induced lung carcinogenesis model in vivo as a chemopreventive agent. More precisely, by utilizing its abundance in nature, eugenol (a component of clove) was utilized to establish the molecular mechanism of chemoprevention in the NDEA-induced mouse lung carcinogenesis model in a substantial cost-effective manner and was validated in the A549 human lung cancer cell line. Our study especially targeted the tiny, drug-resistant, and most virulent subpopulation of cancer cells called CSCs by targeting their regulator molecule ß-catenin. The non-toxic dosage of eugenol was shown to enhance apoptosis, simultaneously suppressing cell proliferation in the lung tissue of carcinogen-treated mice without affecting the normal mice. Combining cellular apoptosis and proliferation, eugenol showed an exceptional chemopreventive potential in this lung carcinogenesis model. Importantly, eugenol strongly restricted the lung carcinoma in the mild dysplastic stage as a chemopreventive agent. The molecular analysis remarkably depicted the restriction of ß-catenin nuclear transportation. The minimized total ß-catenin pool and induced N-terminal Ser37 phosphorylation form after eugenol treatment resulted in its cytoplasmic degradation. Consequently, CSC markers such as CD44, Oct4, EpCAM, and Notcht1, whose expression is dependent on ß-catenin decreased significantly, as proven by IHC, ICC, and WB analysis both in vivo and in vitro. The in vitro secondary sphere formation assay also proved the remarkably repressed CSC population, and hence the virulence. In another way, eugenol was proven to significantly enhance the degradation of ß-catenin when treated with the CK1α inhibitor D4476 in vitro by Western blot. CK1α in the Wnt/ß-catenin pathway plays a crucial role for tagging with the N-terminal Ser45 phosphorylation of ß-catenin, which ultimately opens a position for the decisive phosphorylation by GSK3ß at the Ser37 residue to take place. Thus, the conclusive extermination of CSCs achieved that was associated with recurrence due to treatment failure. That can help to achieve a longer and better quality of life in a natural, economical way.


Assuntos
Eugenol/farmacologia , beta Catenina/metabolismo , Células A549 , Animais , Apoptose , Dietilnitrosamina/toxicidade , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Neoplasias Experimentais/induzido quimicamente , Neoplasias Experimentais/tratamento farmacológico , beta Catenina/genética
3.
Asian Pac J Cancer Prev ; 21(10): 2865-2875, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33112542

RESUMO

BACKGROUND: The Anticancer property of Swertia chirata has been well established. It forms a rich source of compounds to which its anticancer property can be attributed, among the compounds found in S. chirata xanthones form an important group. Among the most abundant xanthones found in S. chirata, 1,5,8-trihydroxy-3-methoxy xanthone (TMX) was found to be most effective. As metastasis is the underlying cause of most cancer-related deaths, in this study, we evaluated the anti-metastatic potential of TMX against adenocarcinoma both in vivo and in vitro. MATERIALS AND METHODS: In vivo anti-metastatic potential was proved by histological evidence of different organs, giemsa staining of bone marrow, subcutaneous re-injection of the aberrant bone marrow cells into the right flank of the mice to observe the formation of tumors and analyzing the markers related to metastasis by immunohistochemistry (IHC) and western blot. In vitro validation of anti-metastatic potential was carried out against human breast adenocarcinoma cell line MCF-7 by primarily analyzing the migratory property of cells through scratch wound healing assay and the ability of cells to form colonies. The re-validation part was performed by western blot of markers related to metastasis and real-time analysis of EMT related markers. RESULTS: In vivo, TMX treatment restricted metastasis of EAC induced solid tumor to liver, lung, bone marrow, and validation of this finding was achieved by down regulation of metastatic and EMT markers.  In vitro, TMX treatment restricted migratory and colony forming ability of MCF-7 cells by down regulating metastatic and EMT markers. CONCLUSION: It was proved from our study that TMX treatment successfully reduced the metastatic potential of EAC induced solid tumor, with in vitro validation TMX on the MCF-7 cell line.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Extratos Vegetais/farmacologia , Swertia/química , Xantonas/farmacologia , Adenocarcinoma/secundário , Animais , Apoptose , Neoplasias da Mama/patologia , Movimento Celular , Proliferação de Células , Feminino , Humanos , Técnicas In Vitro , Camundongos , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Indian J Med Res ; 152(3): 285-295, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-33107489

RESUMO

Background & objectives: Medicinal plants like Swertia chirata are rich sources of different xanthones. This study was aimed to assess the cytotoxic potential of four most abundant xanthones present in S. chirata both in vivo and in vitro in Ehrlich ascites carcinoma (EAC), a mouse transplantable breast carcinoma cell line and two human breast carcinoma cell lines (MCF-7 and MDA-MB-231). Methods: Four xanthones derived from S. chirata namely 1-hydroxy-3,7,8-trimethoxyxanthone (XA), 1,8-dihydroxy-3,5-dimethoxyxanthone (XB), 1-hydroxy-3,5,8-trimethoxyxanthone (XC) and 1,5,8-trihydroxy-3-methoxyxanthone (XD) were used for determination of sub-lethal dose on the cell lines EAC, MCF-7, MDA-MB-231 and verified toxicity of sub-lethal dose on normal murine fibroblast cells. Cytotoxicity was measured in vivo and survivability of mice was plotted accordingly. Therapeutic efficacy of XD was evaluated both in vivo and in vitro by determination of lipid peroxidation (LPO), reactive oxygen species (ROS) generation and by quantitating the enzyme status (GSH, catalase, superoxide dismutase) in treated and untreated samples. DNA damage was evaluated using comet and DNA fragmentation assays. Furthermore, apoptotic effect was analyzed by flow cytometry and validated by TUNEL assay and Western blotting. Results: Among all the xanthones tested XD showed IC50at the lowest dose, and normal cells were unaffected at this dose. Survivability of mice increased significantly when treated with XD compared to other xanthones and cisplatin. Significantly increased ROS and LPO were found in cancer cells as a result of XD treatment which was unaltered in normal cell line. XD induced DNA damage and apoptosis in cancer cell lines. Interpretation & conclusions: Our experimental data indicate that XD may potentially act as a chemotherapeutic agent by enhancing ROS in breast cancer cells thereby leading to apoptosis.


Assuntos
Neoplasias da Mama , Plantas Medicinais , Swertia , Xantonas , Animais , Apoptose , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Humanos , Camundongos , Extratos Vegetais , Xantonas/farmacologia
5.
Chem Biol Interact ; 316: 108938, 2020 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-31926151

RESUMO

Eugenol a phenylpropanoid, predominantly found in clove is a very common spice in daily cuisine. It already reported to have anti-breast cancer activity. In this study, the effect of eugenol on CSC (Cancer Stem Cell) markers and its main regulator ß-catenin both in vivo Ehrlich Ascites Carcinoma (EAC) cell line and in vitro MCF-7 cell line was investigated with that of the untreated group. The therapeutic doses were found to significantly induce apoptosis leaving normal mice and cells unaffected. The in-depth analysis revealed the downregulation of ß-catenin thereby facilitating its degradation by N-terminal phosphorylation of Ser37 residue. Significant downregulation of various CSC markers was also observed in vivo after eugenol treatment those are regulated by the intracellular status of ß-catenin. These findings were validated by the effect of eugenol on the formation of the secondary sphere in vitro. Notable downregulation of the enriched stemness of secondary mammosphere was detected by the significantly decreased percentage of CD44+/CD24-/low population after eugenol treatment along with their distorted morphology and smaller the number of spheres. The underlying mechanism revealed significant downregulation of ß-catenin and the set of CSC markers along with their reduced mRNA expression in secondary sphere culture. Therefore, it can be concluded from the study that eugenol exerts its chemotherapeutic potential by impeding ß-catenin nuclear translocation thereby promoting its cytoplasmic degradation as a result stemness is being suppressed potentially even if in the enriched state. Therefore the study contributes to reduce the cancer-induced complications associated with the CSC population. This will ultimately confer the longer and improved patient's life.


Assuntos
Apoptose/efeitos dos fármacos , Eugenol/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , beta Catenina/metabolismo , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Regulação para Baixo , Eugenol/química , Eugenol/uso terapêutico , Feminino , Humanos , Camundongos , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Fosforilação/efeitos dos fármacos , Receptor Notch1/genética , Receptor Notch1/metabolismo , Transplante Heterólogo , beta Catenina/química
6.
Nat Prod Res ; 34(4): 599-603, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30417669

RESUMO

The methanolic extract of Cycas revoluta cone (MECR) was analyzed by GC-MS and UHPLC for metabolite profiling and was evaluated for anti-colon cancer property by using in vitro assays like Cell Viability Assay, Colony Formation Assay, ROS Determination, Flowcytometry, DAPI staining assay, Tunel assay. GC-MS and HPLC analysis confirmed the presence of different phytochemicals in the extract of Cycas revoluta cone. In-vitro studies showed MECR extract showed significant anti-colon cancer activity by reducing proliferation and inducing apoptosis in colon cancer cell (HCT-8) line, but no such activity was seen in normal colon cell (CCD-18Co) line. The investigation confirms that MECR may be a promising candidate in colon cancer protection.


Assuntos
Neoplasias do Colo/prevenção & controle , Cycas/metabolismo , Extratos Vegetais/química , Apoptose/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Neoplasias do Colo/tratamento farmacológico , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Extratos Vegetais/farmacologia
7.
Free Radic Res ; 53(1): 57-67, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30624093

RESUMO

Therapeutic efficacy of nucleoside analogues (NAs) like Gemcitabine, 5-fluorouracil in cancer treatment is already well established. Most of the known NAs are highly toxic to normal cells due to its non-specific action; thus searching for non-toxic NAs are still going on. For that purpose we have synthesised nine different NAs by alteration of their structural and functional groups. The aim of present study is to investigate the therapeutic potential of NAs against mice bearing breast adenocarcinoma cells at IC50 dose for 10 days treatment schedule. Results of the present study showed that, among the seven nucleoside analogues, NA-7 and NA-9 showed maximum therapeutic efficacy in controlling cancer cells by inhibiting cell proliferation and inducing apoptosis without any adverse effects to normal host cells. Additionally, NAs significantly decreased the tumour burden and enhanced survivability of host through generation of reactive oxygen species in tumour cells. These ultimately led to DNA damage, depolarisation of mitochondrial membrane potential and apoptosis in tumour cells. To find out the molecular mechanisms, we showed that administration of NA-7 and NA-9, down- regulating the expression of Bcl-2, cyclin D1, C-myc, P-21 and up-regulating the expression of P-53, Cyt-c, Bax, caspase-3 and caspase-9. The results suggest that NA-7 and NA-9 exhibits significant antitumor activity than 5-fluorouracil by modulating the cell cycle checkpoints and inducing apoptosis in Ehrlich ascites carcinoma (EAC)-bearing mice. Additionally, NA-7 and NA-9 did not show any clastogenic effect on bone marrow cells at sub-lethal dose. Thus, the present study clearly suggested therapeutic benefit of NAs by augmenting anticancer efficacy and diminishing toxicity to the host.


Assuntos
Antineoplásicos/farmacologia , Carcinoma de Ehrlich/tratamento farmacológico , Carcinoma de Ehrlich/patologia , Nucleosídeos/análogos & derivados , Nucleosídeos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Carcinoma de Ehrlich/metabolismo , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Camundongos , Conformação Molecular , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade
8.
Eur J Pharm Sci ; 125: 39-53, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30223034

RESUMO

KRAS, a frequently mutated G-quadruplex forming proto-oncogene is responsible for almost every type of cancer which can form a parallel G-quadruplex structure in the promoter region. G-quadruplex structure is one of the most important drug targets for modern cancer therapy for their unique structure and specificity. Here, we have screened several synthetic porphyrin-based compounds as potential KRAS G-quadruplex stabilizing ligands, using molecular modeling and docking studies. Two novel porphyrins: Porphyrin-1(Cobalt containing) and Porphyrin-2 (Palladium containing) evidenced high affinity towards KRAS-promoter/G-quadruplex. As KRAS mutation is prevalent in pancreatic cancer, the efficacy of these ligands against human pancreatic ductal carcinoma cell line PANC-1 and MiaPaCa2 were examined. Both the Porphyrins exhibited significant cytotoxicity and block metastasis by inhibiting Epithelial to messenchymal transition. In vivo studies confirmed both porphyrin compounds to be effective against EAC tumors along with significantly low toxicity against normal Swiss albino mice. The expression of KRAS gene in porphyrin-treated PANC-1, MiaPaCa2 and tumor-derived EAC cells were drastically reduced at both protein and RNA levels. Thus interaction of porphyrin-based ligands with G-quadruplex DNA at the promoter region of KRAS, might be utilized as a target for anticancer therapeutic strategy.


Assuntos
Antineoplásicos/farmacologia , Quadruplex G , Neoplasias Pancreáticas/genética , Porfirinas/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Simulação por Computador , Feminino , Humanos , Camundongos , Modelos Moleculares , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Porfirinas/uso terapêutico , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
9.
J Cell Commun Signal ; 12(2): 467-478, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28795302

RESUMO

Sarcoma 180 (S-180) tumour cell line is a stable murine tumour cell line with 98-99% stumour takes capacity in Swiss albino mouse - Mus musculus. 2 Methoxyestradiol (2ME) - a promising anti-neoplastic and anti-angiogenic agent, showed toxicity to host body in higher concentration. Cyclophosphamide (CP), the anti-neoplastic agent has long been used as a chemotherapeutic drug for treatment of different cancers. Our studies have shown that the combination effect of 2ME and CP on S-180 tumour cell line is anti-proliferative and less toxic. The treatment with lower concentrations of 2ME and CP (6.5 mg 2ME/kg body weight + 75 mg CP/kg body weight) antagonistically increased the life span of tumour bearing mice and synergistically inhibited the viable cell population. 2ME or CP treatment individually induces G2/M arrest. The combination treatment of 2ME + CP (6.5 mg 2ME/kg body weight + 75 mg CP/kg body weight) produced a significant increase of cells in the G0 which is the indication of cell arrest or apoptosis. Reduction of cell viability by 2ME + CP treatments is due to apoptotic cell death. This combination therapy produced a significant inhibitory effect of cell proliferation and augmentation of cell accumulation in the G0 phase (i.e. apoptosis). Apoptosis is validated by Fluorescence staining of control and treated S-180 tumour cells with Acridine Orange and EtBr dye. Moreover, a steady increase in the frequency of complex chromosomal aberrations (i.e. tri-, qudri-radial translocations) in tumour cells was noted in that particular concentration of combination therapy treated series along with the increase in dead cell frequency and tumour regression pattern. It is assumed that, these chromosomal abnormalities or damages recorded in higher frequency prevent the affected metaphases to enter into the next cell cycle through apoptosis or necrosis. This study introduces a novel combination, where this particular concentration of 2ME + CP (i.e. 6.5 mg 2ME/kg body weight + 75 mg CP/kg body weight) not only enhanced the life span of tumour bearing mouse and decreased the tumour volume antagonistically but also inhibited the viable cell population synergistically, which could serve as a potential effective regimen for cancer treatment.

10.
Toxicol Appl Pharmacol ; 300: 34-46, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27058323

RESUMO

The aim of this study is to understand the molecular mechanisms of N-nitrosodiethylamine (NDEA) induced multi-organ carcinogenesis in tongue and liver of the same mouse and restriction of carcinogenesis by Epigallocatechin gallate (EGCG) and Theaflavin (TF), if any. For that purpose, cellular proliferation/apoptosis, prevalence of CD44 positive stem cell population and expressions of some key regulatory genes of self renewal Wnt and Hedgehog (Hh) pathways and some of their associated genes were analyzed in the NDEA induced tongue and liver lesions in absence or presence of EGCG/TF. Chronic NDEA exposure in oral cavity could decrease mice body weights and induce tongue and liver carcinogenesis with similar histological stages (severe dysplasia up to 30thweeks of NDEA administration). Increasing mice body weights were seen in continuous and post EGCG/TF treated groups. EGCG/TF treatment could restrict both the carcinogenesis at similar histological stages showing potential chemopreventive effect in continuous treated groups (mild dysplasia) followed by pre treatment (moderate dysplasia) and therapeutic efficacy in post treated groups (mild dysplasia) up to 30thweek. The mechanism of carcinogenesis by NDEA and restriction by the EGCG/TF in both tongue and liver were similar and found to be associated with modulation in cellular proliferation/apoptosis and prevalence of CD44 positive population. The up-regulation of self renewal Wnt/ß-catenin, Hh/Gli1 pathways and their associated genes Cyclin D1, cMyc and EGFR along with down regulation of E-cadherin seen during the carcinogenesis processes were found to be modulated during the restriction processes by EGCG/TF.


Assuntos
Biflavonoides/farmacologia , Catequina/análogos & derivados , Dietilnitrosamina/toxicidade , Neoplasias Hepáticas/prevenção & controle , Neoplasias da Língua/prevenção & controle , Animais , Apoptose/efeitos dos fármacos , Peso Corporal , Carcinogênese/patologia , Catequina/farmacologia , Proliferação de Células/efeitos dos fármacos , Dietilnitrosamina/farmacologia , Feminino , Proteínas Hedgehog/metabolismo , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/patologia , Camundongos , Polifenóis/farmacologia , Neoplasias da Língua/induzido quimicamente , Neoplasias da Língua/patologia , Regulação para Cima , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA