Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomater Adv ; 134: 112676, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35599099

RESUMO

Low-cost sensors to detect cancer biomarkers with high sensitivity and selectivity are essential for early diagnosis. Herein, an immunosensor was developed to detect the cancer biomarker p53 antigen in MCF7 lysates using electrical impedance spectroscopy. Interdigitated electrodes were screen printed on bacterial nanocellulose substrates, then coated with a matrix of layer-by-layer films of chitosan and chondroitin sulfate onto which a layer of anti-p53 antibodies was adsorbed. The immunosensing performance was optimized with a 3-bilayer matrix, with detection of p53 in MCF7 cell lysates at concentrations between 0.01 and 1000 Ucell. mL-1, and detection limit of 0.16 Ucell mL-1. The effective buildup of the immunosensor on bacterial nanocellulose was confirmed with polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS) and surface energy analysis. In spite of the high sensitivity, full selectivity with distinction of the p53-containing cell lysates and possible interferents required treating the data with a supervised machine learning approach based on decision trees. This allowed the creation of a multidimensional calibration space with 11 dimensions (frequencies used to generate decision tree rules), with which the classification of the p53-containing samples can be explained.


Assuntos
Técnicas Biossensoriais , Neoplasias , Biomarcadores Tumorais/análise , Espectroscopia Dielétrica , Eletrodos , Imunoensaio
2.
J Environ Manage ; 293: 112803, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34089952

RESUMO

The reuse of açaí seeds is an organic approach for valorizing biomass, encouraging the public policies of circular economy, which reduces the human impact on the production chain processes. This research proposes an alternative for açaí seed as a filler in castor oil-based polyurethane, obtaining eco-sorbent to evaluate the sorption capacity for another impactful food industry by-product: waste cooking oil (WCO). Eco-sorbents were obtained with castor oil based-polyol and isocyanate (MDI) by mass mixing equal to 1:1 (OH:NCO), reinforced with açaí seed residue (5-20 wt%). The samples were characterized by techniques scanning electron microscopy (SEM), optical microscopy (OM), apparent density, contact angle, infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). Sorption capacity and efficiency were evaluated as a function of the fiber content, with tests performed in times of 30-180 s in two systems: oil and oil/water. The results showed that the eco-sorbents had a hydrophobic nature (θ > 98.3°) and macroporous morphology (pore size from 152 to 119 µm), which allowed the adsorption of residual cooking oil by the porous structure. The kinetics study showed that the sample with greater fiber content (15% wt.) reached the equilibrium in a short time compared to the neat PU for the oil system, with a sorption capacity of 9.50 g g-1 in the first 30 s. For the oil/water system, an opposite behavior could be observed, with a sorption capacity of 9.98 g g-1 in the 150 s equilibrium time. The Langmuir isotherm model presented a maximum adsorption capacity of 10.42 g g-1. However, the Freundlich isotherm model had a better fit to the experimental data with R2 (0.97) and lower chi-square (0.159), showing favorable adsorption (n = 1.496). Thus, it was proved that the weak interactions (connection H) and the binding energy of the predominant physisorption for the oil/water system. Thus, developed eco-sorbents are an excellent option for the sorption of WCO.


Assuntos
Óleo de Rícino , Poluentes Químicos da Água , Adsorção , Biomassa , Culinária , Humanos , Concentração de Íons de Hidrogênio , Cinética , Poluentes Químicos da Água/análise
3.
Mater Sci Eng C Mater Biol Appl ; 120: 111781, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33545909

RESUMO

This study is focused on the development of a nanodevice for loading and release of 5-Fluorouracil (5-FU) with a view to improving its therapeutic efficiency, using as strategy the fabrication of a nanoconjugate through drug anchorage on the surface of carbon quantum dots (CQD). Several physicochemical and analytical techniques were employed to obtain information about materials morphology, structure, and optical properties. The results indicated that the interactions between both entities resulted in good physicochemical properties and photostability. Acid pH favored drug release, indicating a tendency to release 5-FU from 5-FU-CQD into the tumor microenvironment. The cytotoxicity of CQD and 5-FU-CQD nanoconjugate was evaluated against normal human lung fibroblast (GM07492A) and human breast cancer (MCF-7) cell lines. The CQD was non-toxic, indicating that these materials are biocompatible and can be used as a nanocarrier for 5-FU in biological systems. For the 5-FU-CQD nanoconjugate, it was observed a reduction in toxicity for normal cells compared to free 5-FU, suggesting that drug anchoring in CQD reduced drug-associated toxicity, while for cancer cells exhibited an antitumor effect equivalent to that of the free drug, opening perspectives for the application of this material in anticancer therapy.


Assuntos
Fluoruracila , Pontos Quânticos , Carbono , Portadores de Fármacos , Liberação Controlada de Fármacos , Fluoruracila/farmacologia , Humanos , Nanoconjugados
4.
Int J Biol Macromol ; 146: 668-677, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31857161

RESUMO

The extensive use of organic molecules (Rhodamine B and Amitriptyline) also has contributed to environmental pollution; adsorption is a relevant method for removal of these contaminants in aqueous media. In this context, the objective of this study was to modify the surface of cellulose (Cel) with phosphoric acid and sodium tripolyphosphate to obtain a biopolymer with incorporated phosphate groups (PCel). The modification was confirmed by X-ray dispersive energy spectroscopy, solid state nuclear magnetic resonance, X-ray diffraction, and thermal analysis. The obtained material (PCel) was used as a Rhodamine B (RhB) or Amitriptyline (AmTP) adsorbent, and the highest adsorption capacity of this material was obtained at pH 3.0 (RhB) and 7.0 (AmTP) and the equilibrium time was achieved at 65 (RhB) and 150 min (AmTP). Moreover, the pseudo-first-order model best describes the kinetics of this adsorption. The experimental adsorption isotherms were adjusted to the Langmuir model, indicating that monolayer adsorption occurred and the highest experimental adsorption capacity obtained was 47.58 (RhB) and 45.52 mg g-1 (AmTP) in PCel. The thermodynamic parameters showed that the adsorption process is exothermic and non-spontaneous, with increase of non-spontaneity with enhance of the temperature. However, PCel was efficient in removing the contaminant (RhB or AmTP) in an aqueous solution.


Assuntos
Amitriptilina/química , Biopolímeros/química , Celulose/química , Rodaminas/química , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Polifosfatos , Temperatura , Termodinâmica , Água/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Difração de Raios X
5.
Materials (Basel) ; 12(21)2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31694168

RESUMO

Inorganic matrices and biopolymers have been widely used in pharmaceutical fields. They show properties such as biocompatibility, incorporation capacity, and controlled drug release, which can become more attractive if they are combined to form hybrid materials. This work proposes the synthesis of new drug delivery systems (DDS) based on magnesium phyllosilicate (Talc) obtained by the sol-gel route method, the biopolymer chitosan (Ch), and the inorganic-organic hybrid formed between this matrix (Talc + Ch), obtained using glutaraldehyde as a crosslink agent, and to study their incorporation/release capacity of amiloride as a model drug. The systems were characterized by X-ray diffraction (XRD), Therma analysis TG/DTG, and Fourier-transform infrared spectroscopy (FTIR) that supported the DDS's formation. The hybrid showed a better drug incorporation capacity compared to the precursors, with a loading of 55.74, 49.53, and 4.71 mg g-1 for Talc + Ch, Talc, and Ch, respectively. The release assays were performed on a Hanson Research SR-8 Plus dissolver using apparatus I (basket), set to guarantee the sink conditions. The in vitro release tests showed a prolongation of the release rates of this drug for at least 4 h. This result proposes that the systems implies the slow and gradual release of the active substance, favoring the maintenance of the plasma concentration within a therapeutic window.

6.
Sci Rep ; 6: 38330, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27922065

RESUMO

The treatment of leishmaniasis still relies on drugs with potentially serious adverse effects. Herein, we tested a topical formulation of bacterial cellulose (BC) membranes containing Diethyldithiocarbamate (DETC), a superoxide dismutase 1 inhibitor. Leishmania-infected macrophages exposed to BC-DETC resulted in parasite killing, without pronounced toxic effects to host cells. This outcome was associated with lower SOD1 activity and higher production of superoxide and cytokine mediators. Topical application of BC-DETC significantly decreased lesion size, parasite load and the inflammatory response at the infection site, as well as the production of both IFN-γ and TNF. Combination of topical BC-DETC plus intraperitoneal Sbv also significantly reduced disease development and parasite load. The leishmanicidal effect of BC-DETC was extended to human macrophages infected with L. braziliensis, highlighting the feasibility of BC-DETC as a topical formulation for chemotherapy of cutaneous leishmaniasis caused by L. braziliensis.


Assuntos
Antiprotozoários/farmacologia , Celulose/química , Ditiocarb/farmacologia , Leishmania braziliensis/efeitos dos fármacos , Leishmaniose Cutânea/tratamento farmacológico , Meglumina/farmacologia , Compostos Organometálicos/farmacologia , Administração Cutânea , Animais , Antiprotozoários/química , Celulose/isolamento & purificação , Citocinas/biossíntese , Ditiocarb/química , Quimioterapia Combinada , Feminino , Gluconacetobacter/química , Humanos , Injeções Intraperitoneais , Leishmania braziliensis/crescimento & desenvolvimento , Leishmaniose Cutânea/metabolismo , Leishmaniose Cutânea/parasitologia , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Antimoniato de Meglumina , Camundongos , Camundongos Endogâmicos BALB C , Cultura Primária de Células , Superóxido Dismutase-1/metabolismo , Superóxidos/metabolismo
7.
Carbohydr Polym ; 136: 892-8, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26572426

RESUMO

Regenerated cellulose scaffolds (RCS) may be used as alloplastic materials for tissue repair. In this work, the RCS were obtained by viscose process and characterized by scanning electron microscopy (SEM), wide angle X-ray diffraction (WAXD), Fourier transform infrared spectroscopy (FTIR) and thermogravimetry analysis (TG). In vitro enzymatic degradation assay and toxicological assays were also evaluated. The physicochemical characterizations revealed the formation of a porous material with distinct thermal profile and crystallinity compared to pristine cellulose pulp. Enzymatic degradation assay revealed that lysozyme showed a mildest catalytic action when compared to cellulase, Tricoderma reesei (Tr). Nevertheless, both enzymes were efficient for degrading the RCS. RCS did not show cytotoxicity, mutagenic or genotoxic effects. The systematically characterization of this work suggests that RCS presented distinct features that make it a viable material for future studies related to the development of scaffolds for biological applications.


Assuntos
Celulose/análogos & derivados , Alicerces Teciduais/efeitos adversos , Animais , Células CHO , Linhagem Celular Tumoral , Sobrevivência Celular , Celulase/química , Celulose/química , Celulose/toxicidade , Cricetinae , Cricetulus , Dano ao DNA , Muramidase/química , Ratos , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA