Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Biomolecules ; 14(10)2024 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-39456226

RESUMO

The formation of tumor spheroids on the random positioning machine (RPM) is a complex and important process, as it enables the study of metastasis ex vivo. However, this process is not yet understood in detail. In this study, we compared the RPM-induced spheroid formation of two cell types of lung carcinoma (NCI-H1703 squamous cell carcinoma cells and Calu-3 adenocarcinoma cells). While NCI-H1703 cells were mainly present as spheroids after 3 days of random positioning, Calu-3 cells remained predominantly as a cell layer. We found that two-dimensional-growing Calu-3 cells have less mucin-1, further downregulate their expression on the RPM and therefore exhibit a higher adhesiveness. In addition, we observed that Calu-3 cells can form spheroids, but they are unstable due to an imbalanced ratio of adhesion proteins (ß1-integrin, E-cadherin) and anti-adhesion proteins (mucin-1) and are likely to disintegrate in the shear environment of the RPM. RPM-exposed Calu-3 cells showed a strongly upregulated expression of the estrogen receptor alpha gene ESR1. In the presence of 17ß-estradiol or phenol red, more stable Calu-3 spheroids were formed, which was presumably related to an increased amount of E-cadherin in the cell aggregates. Thus, RPM-induced tumor spheroid formation depends not solely on cell-type-specific properties but also on the complex interplay between the mechanical influences of the RPM and, to some extent, the chemical composition of the medium used during the experiments.


Assuntos
Receptor alfa de Estrogênio , Neoplasias Pulmonares , Esferoides Celulares , Humanos , Esferoides Celulares/metabolismo , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Linhagem Celular Tumoral , Receptor alfa de Estrogênio/metabolismo , Receptor alfa de Estrogênio/genética , Estrogênios/farmacologia , Estrogênios/metabolismo , Caderinas/metabolismo , Caderinas/genética , Mucina-1/metabolismo , Mucina-1/genética , Adesão Celular/efeitos dos fármacos , Estradiol/farmacologia , Integrina beta1/metabolismo , Integrina beta1/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
2.
Sci Rep ; 14(1): 10400, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710823

RESUMO

Without the protective shielding of Earth's atmosphere, astronauts face higher doses of ionizing radiation in space, causing serious health concerns. Highly charged and high energy (HZE) particles are particularly effective in causing complex and difficult-to-repair DNA double-strand breaks compared to low linear energy transfer. Additionally, chronic cortisol exposure during spaceflight raises further concerns, although its specific impact on DNA damage and repair remains unknown. This study explorers the effect of different radiation qualities (photons, protons, carbon, and iron ions) on the DNA damage and repair of cortisol-conditioned primary human dermal fibroblasts. Besides, we introduce a new measure, the Foci-Integrated Damage Complexity Score (FIDCS), to assess DNA damage complexity by analyzing focus area and fluorescent intensity. Our results show that the FIDCS captured the DNA damage induced by different radiation qualities better than counting the number of foci, as traditionally done. Besides, using this measure, we were able to identify differences in DNA damage between cortisol-exposed cells and controls. This suggests that, besides measuring the total number of foci, considering the complexity of the DNA damage by means of the FIDCS can provide additional and, in our case, improved information when comparing different radiation qualities.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Fibroblastos , Hidrocortisona , Humanos , Fibroblastos/efeitos da radiação , Fibroblastos/metabolismo , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Hidrocortisona/farmacologia , Radiação Ionizante , Células Cultivadas , Dano ao DNA
3.
NPJ Microgravity ; 9(1): 51, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37380641

RESUMO

Although we have sent humans into space for more than 50 years, crucial questions regarding immune response in space conditions remain unanswered. There are many complex interactions between the immune system and other physiological systems in the human body. This makes it difficult to study the combined long-term effects of space stressors such as radiation and microgravity. In particular, exposure to microgravity and cosmic radiation may produce changes in the performance of the immune system at the cellular and molecular levels and in the major physiological systems of the body. Consequently, abnormal immune responses induced in the space environment may have serious health consequences, especially in future long-term space missions. In particular, radiation-induced immune effects pose significant health challenges for long-duration space exploration missions with potential risks to reduce the organism's ability to respond to injuries, infections, and vaccines, and predispose astronauts to the onset of chronic diseases (e.g., immunosuppression, cardiovascular and metabolic diseases, gut dysbiosis). Other deleterious effects encountered by radiation may include cancer and premature aging, induced by dysregulated redox and metabolic processes, microbiota, immune cell function, endotoxin, and pro-inflammatory signal production1,2. In this review, we summarize and highlight the current understanding of the effects of microgravity and radiation on the immune system and discuss knowledge gaps that future studies should address.

4.
NPJ Microgravity ; 9(1): 40, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37286567

RESUMO

The skeletal muscle and the immune system are heavily affected by the space environment. The crosstalk between these organs, although established, is not fully understood. This study determined the nature of immune cell changes in the murine skeletal muscle following (hindlimb) unloading combined with an acute session of irradiation (HLUR). Our findings show that 14 days of HLUR induces a significant increase of myeloid immune cell infiltration in skeletal muscle.

5.
Cells ; 12(2)2023 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-36672184

RESUMO

Human spaceflight is associated with several health-related issues as a result of long-term exposure to microgravity, ionizing radiation, and higher levels of psychological stress. Frequent reported skin problems in space include rashes, itches, and a delayed wound healing. Access to space is restricted by financial and logistical issues; as a consequence, experimental sample sizes are often small, which limits the generalization of the results. Earth-based simulation models can be used to investigate cellular responses as a result of exposure to certain spaceflight stressors. Here, we describe the development of an in vitro model of the simulated spaceflight environment, which we used to investigate the combined effect of simulated microgravity using the random positioning machine (RPM), ionizing radiation, and stress hormones on the wound-healing capacity of human dermal fibroblasts. Fibroblasts were exposed to cortisol, after which they were irradiated with different radiation qualities (including X-rays, protons, carbon ions, and iron ions) followed by exposure to simulated microgravity using a random positioning machine (RPM). Data related to the inflammatory, proliferation, and remodeling phase of wound healing has been collected. Results show that spaceflight stressors can interfere with the wound healing process at any phase. Moreover, several interactions between the different spaceflight stressors were found. This highlights the complexity that needs to be taken into account when studying the effect of spaceflight stressors on certain biological processes and for the aim of countermeasures development.


Assuntos
Ausência de Peso , Humanos , Ausência de Peso/efeitos adversos , Hidrocortisona/farmacologia , Simulação de Ausência de Peso , Radiação Ionizante , Cicatrização
6.
NPJ Microgravity ; 9(1): 8, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36707520

RESUMO

Human spaceflight is entering a new era of sustainable human space exploration. By 2030 humans will regularly fly to the Moon's orbit, return to the Moon's surface and preparations for crewed Mars missions will intensify. In planning these undertakings, several challenges will need to be addressed in order to ensure the safety of astronauts during their space travels. One of the important challenges to overcome, that could be a major showstopper of the space endeavor, is the exposure to the space radiation environment. There is an urgent need for quantifying, managing and limiting the detrimental health risks and electronics damage induced by space radiation exposure. Such risks raise key priority topics for space research programs. Risk limitation involves obtaining a better understanding of space weather phenomena and the complex radiation environment in spaceflight, as well as developing and applying accurate dosimetric instruments, understanding related short- and long-term health risks, and strategies for effective countermeasures to minimize both exposure to space radiation and the remaining effects post exposure. The ESA/SciSpacE Space Radiation White Paper identifies those topics and underlines priorities for future research and development, to enable safe human and robotic exploration of space beyond Low Earth Orbit.

7.
Front Nucl Med ; 3: 1225034, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-39355042

RESUMO

Ionizing radiation and microgravity are two considerable health risks encountered during deep space exploration. Both have deleterious effects on the human body. On one hand, weightlessness is known to induce a weakening of the immune system, delayed wound healing and musculoskeletal, cardiovascular, and sensorimotor deconditioning. On the other hand, radiation exposure can lead to long-term health effects such as cancer and cataracts as well as have an adverse effect on the central nervous and cardiovascular systems. Ionizing radiation originates from three main sources in space: galactic cosmic radiation, solar particle events and solar winds. Furthermore, inside the spacecraft and inside certain space habitats on Lunar and Martian surfaces, the crew is exposed to intravehicular radiation, which arises from nuclear reactions between space radiation and matter. Besides the approaches already in use, such as radiation shielding materials (such as aluminium, water or polyethylene), alternative shielding materials (including boron nanotubes, complex hybrids, composite hybrid materials, and regolith) and active shielding (using fields to deflect radiation particles) are being investigated for their abilities to mitigate the effects of ionizing radiation. From a biological point of view, it can be predicted that exposure to ionizing radiation during missions beyond Low Earth Orbit (LEO) will affect the human body in undesirable ways, e.g., increasing the risks of cataracts, cardiovascular and central nervous system diseases, carcinogenesis, as well as accelerated ageing. Therefore, it is necessary to assess the risks related to deep space exploration and to develop mitigation strategies to reduce these risks to a tolerable level. By using biomarkers for radiation sensitivity, space agencies are developing extensive personalised medical examination programmes to determine an astronaut's vulnerability to radiation. Moreover, researchers are developing pharmacological solutions (e.g., radioprotectors and radiomitigators) to proactively or reactively protect astronauts during deep space exploration. Finally, research is necessary to develop more effective countermeasures for use in future human space missions, which can also lead to improvements to medical care on Earth. This review will discuss the risks space travel beyond LEO poses to astronauts, methods to monitor astronauts' health, and possible approaches to mitigate these risks.

8.
Int J Radiat Biol ; 98(12): 1722-1751, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35976069

RESUMO

BACKGROUND: Epidemiological studies have indicated that exposure of the heart to doses of ionizing radiation as low as 0.5 Gy increases the risk of cardiac morbidity and mortality with a latency period of decades. The damaging effects of radiation to myocardial and endothelial structures and functions have been confirmed radiobiologically at high dose, but much less are known at low dose. Integration of radiation biology and epidemiology data is a recommended approach to improve the radiation risk assessment process. The adverse outcome pathway (AOP) framework offers a comprehensive tool to compile and translate mechanistic information into pathological endpoints which may be relevant for risk assessment at the different levels of a biological system. Omics technologies enable the generation of large volumes of biological data at various levels of complexity, from molecular pathways to functional organisms. Given the quality and quantity of available data across levels of biology, omics data can be attractive sources of information for use within the AOP framework. It is anticipated that radiation omics studies could improve our understanding of the molecular mechanisms behind the adverse effects of radiation on the cardiovascular system. In this review, we explored the available omics studies on radiation-induced cardiovascular disease (CVD) and their applicability to the proposed AOP for CVD. RESULTS: The results of 80 omics studies published on radiation-induced CVD over the past 20 years have been discussed in the context of the AOP of CVD proposed by Chauhan et al. Most of the available omics data on radiation-induced CVD are from proteomics, transcriptomics, and metabolomics, whereas few datasets were available from epigenomics and multi-omics. The omics data presented here show great promise in providing information for several key events (KEs) of the proposed AOP of CVD, particularly oxidative stress, alterations of energy metabolism, extracellular matrix (ECM), and vascular remodeling. CONCLUSIONS: The omics data presented here shows promise to inform the various levels of the proposed AOP of CVD. However, the data highlight the urgent need of designing omics studies to address the knowledge gap concerning different radiation scenarios, time after exposure, and experimental models. This review presents the evidence to build a qualitative omics-informed AOP and provides views on the potential benefits and challenges in using omics data to assess risk-related outcomes.


Assuntos
Rotas de Resultados Adversos , Doenças Cardiovasculares , Sistema Cardiovascular , Humanos , Doenças Cardiovasculares/etiologia , Proteômica/métodos , Metabolômica/métodos
9.
Front Cell Dev Biol ; 10: 841017, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35252204

RESUMO

Prostate cancer metastasis has an enormous impact on the mortality of cancer patients. Factors involved in cancer progression and metastasis are known to be key players in microgravity (µg)-driven three-dimensional (3D) cancer spheroid formation. We investigated PC-3 prostate cancer cells for 30 min, 2, 4 and 24 h on the random positioning machine (RPM), a device simulating µg on Earth. After a 24 h RPM-exposure, the cells could be divided into two groups: one grew as 3D multicellular spheroids (MCS), the other one as adherent monolayer (AD). No signs of apoptosis were visible. Among others, we focused on cytokines involved in the events of metastasis and MCS formation. After 24 h of exposure, in the MCS group we measured an increase in ACTB, MSN, COL1A1, LAMA3, FN1, TIMP1, FLT1, EGFR1, IL1A, IL6, CXCL8, and HIF1A mRNA expression, and in the AD group an elevation of LAMA3, COL1A1, FN1, MMP9, VEGFA, IL6, and CXCL8 mRNAs compared to samples subjected to 1 g conditions. Significant downregulations in AD cells were detected in the mRNA levels of TUBB, KRT8, IL1B, IL7, PIK3CB, AKT1 and MTOR after 24 h. The release of collagen-1α1 and fibronectin protein in the supernatant was decreased, whereas the secretion of IL-6 was elevated in 24 h RPM samples. The secretion of IL-1α, IL-1ß, IL-7, IL-2, IL-8, IL-17, TNF-α, laminin, MMP-2, TIMP-1, osteopontin and EGF was not significantly altered after 24 h compared to 1 g conditions. The release of soluble factors was significantly reduced after 2 h (IL-1α, IL-2, IL-7, IL-8, IL-17, TNF-α, collagen-1α1, MMP-2, osteopontin) and elevated after 4 h (IL-1ß, IL-2, IL-6, IL-7, IL-8, TNF-α, laminin) in RPM samples. Taken together, simulated µg induced 3D growth of PC-3 cancer cells combined with a differential expression of the cytokines IL-1α, IL-1ß, IL-6 and IL-8, supporting their involvement in growth and progression of prostate cancer cells.

10.
Front Immunol ; 13: 830662, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251019

RESUMO

Alterations of the immune system could seriously impair the ability to combat infections during future long-duration space missions. However, little is known about the effects of spaceflight on the B-cell compartment. Given the limited access to astronaut samples, we addressed this question using blood samples collected from 20 healthy male volunteers subjected to long-duration bed rest, an Earth-based analog of spaceflight. Hematopoietic progenitors, white blood cells, total lymphocytes and B-cells, four B-cell subsets, immunoglobulin isotypes, six cytokines involved in inflammation, cortisone and cortisol were quantified at five time points. Tibia microarchitecture was also studied. Moreover, we investigated the efficiency of antioxidant supplementation with a cocktail including polyphenols, omega 3, vitamin E and selenium. Our results show that circulating hematopoietic progenitors, white blood cells, total lymphocytes and B-cells, and B-cell subsets were not affected by bed rest. Cytokine quantification suggested a lower systemic inflammatory status, supported by an increase in serum cortisone, during bed rest. These data confirm the in vivo hormonal dysregulation of immunity observed in astronauts and show that bed rest does not alter B-cell homeostasis. This lack of an impact of long-term bed rest on B-cell homeostasis can, at least partially, be explained by limited bone remodeling. None of the evaluated parameters were affected by the administration of the antioxidant supplement. The non-effectiveness of the supplement may be because the diet provided to the non-supplemented and supplemented volunteers already contained sufficient antioxidants. Given the limitations of this model, further studies will be required to determine whether B-cell homeostasis is affected, especially during future deep-space exploration missions that will be of unprecedented durations.


Assuntos
Repouso em Cama , Cortisona , Antioxidantes , Repouso em Cama/efeitos adversos , Suplementos Nutricionais , Decúbito Inclinado com Rebaixamento da Cabeça/fisiologia , Homeostase , Humanos , Masculino
11.
Int J Mol Sci ; 22(16)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34445479

RESUMO

A spaceflight to the International Space Station (ISS) is a dream of many researchers. We had the chance to investigate the effect of real microgravity (CellBox-2 Space mission) on the transcriptome and proteome of FTC-133 human follicular thyroid cancer cells (TCC). The cells had been sent to the ISS by a Falcon 9 rocket of SpaceX CRS-13 from Cape Canaveral (United States) and cultured in six automated hardware units on the ISS before they were fixed and returned to Earth. Multicellular spheroids (MCS) were detectable in all spaceflight hardware units. The VCL, PXN, ITGB1, RELA, ERK1 and ERK2 mRNA levels were significantly downregulated after 5 days in space in adherently growing cells (AD) and MCS compared with ground controls (1g), whereas the MIK67 and SRC mRNA levels were both suppressed in MCS. By contrast, the ICAM1, COL1A1 and IL6 mRNA levels were significantly upregulated in AD cells compared with 1g and MCS. The protein secretion measured by multianalyte profiling technology and enzyme-linked immunosorbent assay (AngiogenesisMAP®, extracellular matrix proteins) was not significantly altered, with the exception of elevated angiopoietin 2. TCC in space formed MCS, and the response to microgravity was mainly anti-proliferative. We identified ERK/RELA as a major microgravity regulatory pathway.


Assuntos
Adenocarcinoma Folicular/patologia , Biomarcadores Tumorais/metabolismo , Proteoma/metabolismo , Esferoides Celulares/patologia , Neoplasias da Glândula Tireoide/patologia , Transcriptoma , Ausência de Peso , Adenocarcinoma Folicular/genética , Adenocarcinoma Folicular/metabolismo , Biomarcadores Tumorais/genética , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Proteoma/análise , Voo Espacial , Esferoides Celulares/metabolismo , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Células Tumorais Cultivadas
12.
Front Public Health ; 9: 584484, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33692980

RESUMO

Stem cells contained within the dental mesenchymal stromal cell (MSC) population are crucial for tissue homeostasis. Assuring their genomic stability is therefore essential. Exposure of stem cells to ionizing radiation (IR) is potentially detrimental for normal tissue homeostasis. Although it has been established that exposure to high doses of ionizing radiation (IR) has severe adverse effects on MSCs, knowledge about the impact of low doses of IR is lacking. Here we investigated the effect of low doses of X-irradiation with medical imaging beam settings (<0.1 Gray; 900 mGray per hour), in vitro, on pediatric dental mesenchymal stromal cells containing dental pulp stem cells from deciduous teeth, dental follicle progenitor cells and stem cells from the apical papilla. DNA double strand break (DSB) formation and repair kinetics were monitored by immunocytochemistry of γH2AX and 53BP1 as well as cell cycle progression by flow cytometry and cellular senescence by senescence-associated ß-galactosidase assay and ELISA. Increased DNA DSB repair foci, after exposure to low doses of X-rays, were measured as early as 30 min post-irradiation. The number of DSBs returned to baseline levels 24 h after irradiation. Cell cycle analysis revealed marginal effects of IR on cell cycle progression, although a slight G2/M phase arrest was seen in dental pulp stromal cells from deciduous teeth 72 h after irradiation. Despite this cell cycle arrest, no radiation-induced senescence was observed. In conclusion, low X-ray IR doses (< 0.1 Gray; 900 mGray per hour), were able to induce significant increases in the number of DNA DSBs repair foci, but cell cycle progression seems to be minimally affected. This highlights the need for more detailed and extensive studies on the effects of exposure to low IR doses on different mesenchymal stromal cells.


Assuntos
Células-Tronco Mesenquimais , Criança , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Histonas/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Raios X
13.
Biomedicines ; 10(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35052703

RESUMO

In this review article, we discuss the current state of knowledge in cancer research under real and simulated microgravity conditions and point out further research directions in this field. Outer space is an extremely hostile environment for human life, with radiation, microgravity, and vacuum posing significant hazards. Although the risk for cancer in astronauts is not clear, microgravity plays a thought-provoking role in the carcinogenesis of normal and cancer cells, causing such effects as multicellular spheroid formation, cytoskeleton rearrangement, alteration of gene expression and protein synthesis, and apoptosis. Furthermore, deleterious effects of radiation on cells seem to be accentuated under microgravity. Ground-based facilities have been used to study microgravity effects in addition to laborious experiments during parabolic flights or on space stations. Some potential 'gravisensors' have already been detected, and further identification of these mechanisms of mechanosensitivity could open up ways for therapeutic influence on cancer growth and apoptosis. These novel findings may help to find new effective cancer treatments and to provide health protection for humans on future long-term spaceflights and exploration of outer space.

14.
Int J Mol Sci ; 21(11)2020 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-32486504

RESUMO

Breast cancer remains a major concern and its physiopathology is influenced by iodine deficiency (ID) and radiation exposure. Since radiation and ID can separately induce oxidative stress (OS) and microvascular responses in breast, their combination could additively increase these responses. Therefore, ID was induced in MCF7 and MCF12A breast cell lines by medium change. Cells were then X-irradiated with doses of 0.05, 0.1, or 3 Gy. In MCF12A cells, both ID and radiation (0.1 and 3 Gy) increased OS and vascular endothelial growth factor (VEGF) expression, with an additive effect when the highest dose was combined with ID. However, in MCF7 cells no additive effect was observed. VEGF mRNA up-regulation was reactive oxygen species (ROS)-dependent, involving radiation-induced mitochondrial ROS. Results on total VEGF mRNA hold true for the pro-angiogenic isoform VEGF165 mRNA, but the treatments did not modulate the anti-angiogenic isoform VEGF165b. Radiation-induced antioxidant response was differentially regulated upon ID in both cell lines. Thus, radiation response is modulated according to iodine status and cell type and can lead to additive effects on ROS and VEGF. As these are often involved in cancer initiation and progression, we believe that iodine status should be taken into account in radiation prevention policies.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/radioterapia , Mama/metabolismo , Mama/efeitos da radiação , Iodo/deficiência , Estresse Oxidativo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Antioxidantes/metabolismo , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Feminino , Humanos , Células MCF-7 , Neovascularização Patológica , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima
15.
Front Pharmacol ; 11: 268, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32231569

RESUMO

BACKGROUND AND PURPOSE: Up to 50-60% of all cancer patients receive radiotherapy as part of their treatment strategy. However, the mechanisms accounting for increased vascular risks after irradiation are not completely understood. Mitochondrial dysfunction has been identified as a potential cause of radiation-induced atherosclerosis. MATERIALS AND METHODS: Assays for apoptosis, cellular metabolism, mitochondrial DNA content, functionality and morphology were used to compare the response of endothelial cells to a single 2 Gy dose of X-rays under basal conditions or after pharmacological treatments that either reduced (EtBr) or increased (rosiglitazone) mitochondrial content. RESULTS: Exposure to ionizing radiation caused a persistent reduction in mitochondrial content of endothelial cells. Pharmacological reduction of mitochondrial DNA content rendered endothelial cells more vulnerable to radiation-induced apoptosis, whereas rosiglitazone treatment increased oxidative metabolism and redox state and decreased the levels of apoptosis after irradiation. CONCLUSION: Pre-existing mitochondrial damage sensitizes endothelial cells to ionizing radiation-induced mitochondrial dysfunction. Rosiglitazone protects endothelial cells from the detrimental effects of radiation exposure on mitochondrial metabolism and oxidative stress. Thus, our findings indicate that rosiglitazone may have potential value as prophylactic for radiation-induced atherosclerosis.

16.
Front Oncol ; 10: 128, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117774

RESUMO

Radiotherapy plays a central role in the treatment of cancer patients. Over the past decades, remarkable technological progress has been made in the field of conventional radiotherapy. In addition, the use of charged particles (e.g., protons and carbon ions) makes it possible to further improve dose deposition to the tumor, while sparing the surrounding healthy tissues. Despite these improvements, radioresistance and tumor recurrence are still observed. Although the mechanisms underlying resistance to conventional radiotherapy are well-studied, scientific evidence on the impact of charged particle therapy on cancer cell radioresistance is restricted. The purpose of this review is to discuss the potential role that charged particles could play to overcome radioresistance. This review will focus on hypoxia, cancer stem cells, and specific signaling pathways of EGFR, NFκB, and Hedgehog as well as DNA damage signaling involving PARP, as mechanisms of radioresistance for which pharmacological targets have been identified. Finally, new lines of future research will be proposed, with a focus on novel molecular inhibitors that could be used in combination with charged particle therapy as a novel treatment option for radioresistant tumors.

17.
Int J Oncol ; 55(6): 1339-1348, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31638201

RESUMO

The use of carbon ion therapy for cancer treatment is becoming more widespread due to the advantages of carbon ions compared with X­rays. Breast cancer patients may benefit from these advantages, as the surrounding healthy tissues receive a lower dose, and the increased biological effectiveness of carbon ions can better control radioresistant cancer cells. Accumulating evidence indicates that the Hedgehog (Hh) pathway is linked to the development and progression of breast cancer, as well as to resistance to X­irradiation and the migratory capacity of cancer cells. Hence, there is an increasing interest in targeting the Hh pathway in combination with radiotherapy. Several studies have already investigated this treatment strategy with conventional radiotherapy. However, to the best of our knowledge, the combination of Hh inhibitors with particle therapy has not yet been explored. The aim of the present study was to investigate the potential of the Hh inhibitor GANT61 as an effective modulator of radiosensitivity and migration potential in MCF­7 breast cancer cells, and compare potential differences between carbon ion irradiation and X­ray exposure. Although Hh targeting was not able to radiosensitise cells to any radiation type used, the combination of GANT61 with X­rays or carbon ions (energy: 95 MeV/n; linear energy transfer: 73 keV/µm) was more effective in decreasing MCF­7 cell migration compared with either radiation type alone. Gene expression of the Hh pathway was affected to different degrees in response to X­ray and carbon ion irradiation, as well as in response to the combination of GANT61 with irradiation. In conclusion, combining Hh inhibition with radiation (X­rays or carbon ions) more effectively decreased breast cancer cell migration compared with radiation treatment alone.


Assuntos
Neoplasias da Mama/terapia , Quimiorradioterapia/métodos , Proteínas Hedgehog/antagonistas & inibidores , Piridinas/farmacologia , Pirimidinas/farmacologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/efeitos da radiação , Proliferação de Células , Sobrevivência Celular , Perfilação da Expressão Gênica , Radioterapia com Íons Pesados/métodos , Proteínas Hedgehog/metabolismo , Humanos , Células MCF-7 , Piridinas/uso terapêutico , Pirimidinas/uso terapêutico , Tolerância a Radiação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Terapia por Raios X/métodos
18.
Front Oncol ; 9: 391, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31139573

RESUMO

Due to the advantages of charged particles compared to conventional radiotherapy, a vast increase is noted in the use of particle therapy in the clinic. These advantages include an improved dose deposition and increased biological effectiveness. Metastasis is still an important cause of mortality in cancer patients and evidence has shown that conventional radiotherapy can increase the formation of metastasizing cells. An important pathway involved in the process of metastasis is the Hedgehog (Hh) signaling pathway. Recent studies have demonstrated that activation of the Hh pathway, in response to X-rays, can lead to radioresistance and increased migratory, and invasive capabilities of cancer cells. Here, we investigated the effect of X-rays, protons, and carbon ions on cell survival, migration, and Hh pathway gene expression in prostate cancer (PC3) and medulloblastoma (DAOY) cell lines. In addition, the potential modulation of cell survival and migration by the Hh pathway inhibitor GANT61 was investigated. We found that in both cell lines, carbon ions were more effective in decreasing cell survival and migration as well as inducing more significant alterations in the Hh pathway genes compared to X-rays or protons. In addition, we show here for the first time that the Hh inhibitor GANT61 is able to sensitize DAOY medulloblastoma cells to particle radiation (proton and carbon ion) but not to conventional X-rays. This important finding demonstrates that the results of combination treatment strategies with X-ray radiotherapy cannot be automatically extrapolated to particle therapy and should be investigated separately. In conclusion, combining GANT61 with particle radiation could offer a benefit for specific cancer types with regard to cancer cell survival.

19.
Cell Mol Life Sci ; 76(4): 699-728, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30377700

RESUMO

The endothelium, a tissue that forms a single layer of cells lining various organs and cavities of the body, especially the heart and blood as well as lymphatic vessels, plays a complex role in vascular biology. It contributes to key aspects of vascular homeostasis and is also involved in pathophysiological processes, such as thrombosis, inflammation, and hypertension. Epidemiological data show that high doses of ionizing radiation lead to cardiovascular disease over time. The aim of this review is to summarize the current knowledge on endothelial cell activation and dysfunction after ionizing radiation exposure as a central feature preceding the development of cardiovascular diseases.


Assuntos
Células Endoteliais/efeitos da radiação , Endotélio Vascular/efeitos da radiação , Endotélio/efeitos da radiação , Lesões por Radiação/fisiopatologia , Radiação Ionizante , Animais , Doenças Cardiovasculares/patologia , Doenças Cardiovasculares/fisiopatologia , Senescência Celular/efeitos da radiação , Células Endoteliais/patologia , Endotélio/patologia , Endotélio/fisiopatologia , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Humanos , Modelos Biológicos
20.
Front Pharmacol ; 8: 570, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28993729

RESUMO

Background and Purpose: Radiotherapy is an essential tool for cancer treatment. In order to spare normal tissues and to reduce the risk of normal tissue complications, particle therapy is a method of choice. Although a large part of healthy tissues can be spared due to improved depth dose characteristics, little is known about the biological and molecular mechanisms altered after particle irradiation in healthy tissues. Elucidation of these effects is also required in the context of long term space flights, as particle radiation is the main contributor to the radiation effects observed in space. Endothelial cells (EC), forming the inner layer of all vascular structures, are especially sensitive to irradiation and, if damaged, contribute to radiation-induced cardiovascular disease. Materials and Methods: Transcriptomics, proteomics and cytokine analyses were used to compare the response of ECs irradiated or not with a single 2 Gy dose of X-rays or Fe ions measured one and 7 days post-irradiation. To support the observed inflammatory effects, monocyte adhesion on ECs was also assessed. Results: Experimental data indicate time- and radiation quality-dependent changes of the EC response to irradiation. The irradiation impact was more pronounced and longer lasting for Fe ions than for X-rays. Both radiation qualities decreased the expression of genes involved in cell-cell adhesion and enhanced the expression of proteins involved in caveolar mediated endocytosis signaling. Endothelial inflammation and adhesiveness were increased with X-rays, but decreased after Fe ion exposure. Conclusions: Fe ions induce pro-atherosclerotic processes in ECs that are different in nature and kinetics than those induced by X-rays, highlighting radiation quality-dependent differences which can be linked to the induction and progression of cardiovascular diseases (CVD). Our findings give a better understanding of the underlying processes triggered by particle irradiation in ECs, a crucial aspect for the development of protective measures for cancer patients undergoing particle therapy and for astronauts in space.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA