RESUMO
The single-layer epithelium of the gastrointestinal tract is a dynamically renewing tissue that ensures nutrient absorption, secretory and barrier functions and is involved in immune responses. The basis for this homeostatic renewal is the Wnt signaling pathway. Blocking this pathway can lead to epithelial damage, while its abnormal activation can result in the development of intestinal tumors. In this study, we investigated the dynamics of intestinal epithelial cells and tumorigenesis using a conditional mouse model. Using single-cell and bulk RNA sequencing and histological analysis, we elucidated the cellular responses following the loss of specific cell types. We focused on the fate of cells in the lower parts of the intestinal crypts and the development of colon adenomas. By partially inactivating the transcription factor Tcf4, a key effector of the Wnt signaling pathway, we analyzed the regeneration of isolated hyperproliferative foci (crypts). Our results suggest that the damaged epithelium is not restored by a specific regeneration program associated with oncofetal gene production, but rather by a standard homeostatic renewal pathway. Moreover, disruption of Tcf4 in secretory progenitors resulted in a significant shift in the cell lineage from Paneth cells to goblet cells, characterized by morphological changes and loss of Paneth cell-specific genes. We also found that hyperactivation of the Wnt signaling pathway in colonic adenomas correlated with the upregulation of genes typical of Paneth cells in the intestine, followed by the emergence of secretory tumor cells producing the Wnt3 ligand. The absence of Tcf4 led to a phenotypic shift of the tumor cells towards goblet cells. Our study presents a new model of epithelial regeneration based on the genetically driven partial elimination of intestinal crypts. We highlight the critical role of Tcf4 in the control of cell lineage decisions in the intestinal epithelium and colon tumors.
RESUMO
Helicobacter pylori infection is a major risk factor for the development of gastric cancer. The bacteria reside in close proximity to gastric surface mucous as well as stem and progenitor cells. Here, we take advantage of wild-type and genetically engineered murine gastric organoids and organoid-derived monolayers to study the cellular targets of H. pylori-induced DNA damage and replication stress and to explore possible interactions with preexisting gastric cancer driver mutations. We find using alkaline comet assay, single-molecule DNA fiber assays, and immunofluorescence microscopy of DNA repair foci that H. pylori induces transcription-dependent DNA damage in actively replicating, Leucine-rich-repeat containing G-Protein-Coupled Receptor 5 (Lgr5)-positive antral stem and progenitor cells and their Troy-positive corpus counterparts, but not in other gastric epithelial lineages. Infection-dependent DNA damage is aggravated by Apc inactivation, but not by Trp53 or Smad4 loss, or Erbb2 overexpression. Our data suggest that H. pylori induces DNA damage in stem and progenitor cells, especially in settings of hyperproliferation due to constitutively active Wnt signaling.
Assuntos
Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Animais , Humanos , Camundongos , Dano ao DNA , Genes Supressores de Tumor , Infecções por Helicobacter/genética , Infecções por Helicobacter/microbiologia , Helicobacter pylori/genética , Receptores Acoplados a Proteínas G/genética , Células-Tronco , Neoplasias Gástricas/patologiaRESUMO
Embryonic genetic programs are reactivated in response to various types of tissue damage, providing cell plasticity for tissue regeneration or disease progression. In acute conditions, these programs remedy the damage and then halt to allow a return to homeostasis. In chronic situations, including inflammatory diseases, fibrosis and cancer, prolonged activation of embryonic programs leads to disease progression and tissue deterioration. Induction of progenitor identity and cell plasticity, for example, epithelial-mesenchymal plasticity, are critical outcomes of reactivated embryonic programs. In this Review, we describe molecular players governing reactivated embryonic genetic programs, their role during disease progression, their similarities and differences and lineage reversion in pathology and discuss associated therapeutics and drug-resistance mechanisms across many organs. We also discuss the diversity of reactivated programs in different disease contexts. A comprehensive overview of commonalities between development and disease will provide better understanding of the biology and therapeutic strategies.
Assuntos
Progressão da Doença , Desenvolvimento Embrionário , Humanos , Desenvolvimento Embrionário/genética , Plasticidade CelularRESUMO
Only in recent years have we begun to appreciate the involvement of fibroblasts in intestinal development, tissue homeostasis, and disease. These insights followed the advent of single-cell transcriptomics that allowed researchers to explore the heterogeneity of intestinal fibroblasts in unprecedented detail. Since researchers often defined cell types and their associated function based on the biological process they studied, there are a plethora of partially overlapping markers for different intestinal fibroblast populations. This ambiguity complicates putting different research findings into context. Here, we provide a census on the function and identity of intestinal fibroblasts in mouse and human. We propose a simplified framework consisting of three colonic and four small intestinal fibroblast populations to aid navigating the diversity of intestinal fibroblasts.
Assuntos
Fibroblastos , Intestinos , Humanos , Camundongos , Animais , Fibroblastos/metabolismo , HomeostaseRESUMO
BACKGROUND & AIMS: Glycoprotein (GP)96 is an endoplasmic reticulum-resident master chaperone for cell surface receptors including the Wnt co-receptors low-density lipoprotein-receptor-related protein 5/6. Intestinal epithelial cell (IEC)-specific deletion of Gp96 is embryonically lethal. However, the role of GP96 in adult intestinal tissue and especially within the intestinal stem cell (ISC) niche is unknown. Here, we investigated how GP96 loss interferes with intestinal homeostasis by compromising viability, proliferation, and differentiation of IECs. METHODS: Tamoxifen was used to induce Cre-mediated deletion of Gp96 in GP96-VillincreERT2 (Cre recombinase-Estrogen-Receptor Transgene 2) mice and intestinal organoids. With H&E and immunofluorescence staining we assessed alterations in intestinal morphology and the presence and localization of IEC types. Real-time polymerase chain reaction and Western blot analysis were performed to explore the molecular mechanisms underlying the severe phenotype of Gp96 KO mice and organoids. RESULTS: IEC-specific deletion of Gp96 in adult mice resulted in a rapid degeneration of the stem cell niche, followed by complete eradication of the epithelial layer and death within a few days. These effects were owing to severe defects in ISC renewal and premature ISC differentiation, which resulted from defective Wnt and Notch signaling. Furthermore, depletion of GP96 led to massive induction of endoplasmic reticulum stress. Although effects on ISC renewal and adequate differentiation were partly reversed upon activation of Wnt/Notch signaling, viability could not be restored, indicating that reduced viability was mediated by other mechanisms. CONCLUSIONS: Our work shows that GP96 plays a fundamental role in regulating ISC fate and epithelial regeneration and therefore is indispensable for maintaining intestinal epithelial homeostasis.
Assuntos
Células Epiteliais , Intestinos , Glicoproteínas de Membrana , Animais , Camundongos , Proliferação de Células , Células Epiteliais/metabolismo , Glicoproteínas/metabolismo , Intestinos/citologia , Via de Sinalização Wnt/genética , Glicoproteínas de Membrana/metabolismoRESUMO
Colon cancer is initiated by stem cells that escape the strict control. This process is often driven through aberrant activation of Wnt signaling by mutations in components acting downstream of the receptor complex that unfetter tumor cells from the need for Wnts. Here we describe a class of colon cancer that does not depend on mutated core components of the Wnt pathway. Genetically blocking Wnt secretion from epithelial cells of such tumors results in apoptosis, reduced expression of colon cancer markers, followed by enhanced tumor differentiation. In contrast to the normal colonic epithelium, such tumor cells autosecrete Wnts to maintain their uncontrolled proliferative behavior. In humans, we determined certain cases of colon cancers in which the Wnt pathway is hyperactive, but not through mutations in its core components. Our findings illuminate the path in therapy to find further subtypes of Wnt-dependent colon cancer that might be responsive to Wnt secretion inhibitors.
RESUMO
Mouse embryonic stem cells (mESCs) can be maintained in vitro in defined N2B27 medium supplemented with two chemical inhibitors for GSK3 and MEK (2i) and the cytokine leukemia inhibitory factor (LIF), which act synergistically to promote self-renewal and pluripotency. Here, we find that genetic deletion of the four genes encoding the TCF/LEF transcription factors confers mESCs with the ability to self-renew in N2B27 medium alone. TCF/LEF quadruple knockout (qKO) mESCs display dysregulation of several genes, including Aire, Dnmt3l, and IcosL, located adjacent to each other within a topologically associated domain (TAD). Aire, Dnmt3l, and IcosL appear to be regulated by TCF/LEF in a ß-catenin independent manner. Moreover, downregulation of Aire and Dnmt3l in wild-type mESCs mimics the loss of TCF/LEF and increases mESC survival in the absence of 2iL. Hence, this study identifies TCF/LEF effectors that mediate exit from the pluripotent state.
Assuntos
Autorrenovação Celular , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 1 de Ligação ao Facilitador Linfoide/genética , Proteína 1 Semelhante ao Fator 7 de Transcrição/genética , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Animais , Benzamidas/farmacologia , Autorrenovação Celular/efeitos dos fármacos , Meios de Cultura/química , Meios de Cultura/farmacologia , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Difenilamina/análogos & derivados , Difenilamina/farmacologia , Regulação para Baixo/efeitos dos fármacos , Edição de Genes , Fator 1-alfa Nuclear de Hepatócito/deficiência , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Ligante Coestimulador de Linfócitos T Induzíveis/antagonistas & inibidores , Ligante Coestimulador de Linfócitos T Induzíveis/genética , Ligante Coestimulador de Linfócitos T Induzíveis/metabolismo , Fator 1 de Ligação ao Facilitador Linfoide/deficiência , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Piridinas/farmacologia , Pirimidinas/farmacologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteína 1 Semelhante ao Fator 7 de Transcrição/deficiência , Proteína 1 Semelhante ao Fator 7 de Transcrição/metabolismo , Proteína 2 Semelhante ao Fator 7 de Transcrição/deficiência , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , beta Catenina/deficiência , beta Catenina/genética , Proteína AIRERESUMO
Canonical Wnt/ß-catenin signaling is an established regulator of cellular state and its critical contributions to tumor initiation, malignant tumor progression and metastasis formation have been demonstrated in various cancer types. Here, we investigated how the binding of ß-catenin to the transcriptional coactivators B-cell CLL/lymphoma 9 (Bcl9) and Bcl9-Like (Bcl9L) affected mammary gland carcinogenesis in the MMTV-PyMT transgenic mouse model of metastatic breast cancer. Conditional knockout of both Bcl9 and Bcl9L resulted into tumor cell death. In contrast, disrupting the interaction of Bcl9/Bcl9L with ß-catenin, either by deletion of their HD2 domains or by a point mutation in the N-terminal domain of ß-catenin (D164A), diminished primary tumor growth and tumor cell proliferation and reduced tumor cell invasion and lung metastasis. In comparison, the disruption of HD1 domain-mediated binding of Bcl9/Bcl9L to Pygopus had only moderate effects. Interestingly, interfering with the ß-catenin-Bcl9/Bcl9L-Pygo chain of adapters only partially impaired the transcriptional response of mammary tumor cells to Wnt3a and TGFß treatments. Together, the results indicate that Bcl9/Bcl9L modulate but are not critically required for canonical Wnt signaling in its contribution to breast cancer growth and malignant progression, a notion consistent with the "just-right" hypothesis of Wnt-driven tumor progression.
Assuntos
Neoplasias da Mama/patologia , Proteínas de Ligação a DNA/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fatores de Transcrição/metabolismo , beta Catenina/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Progressão da Doença , Transição Epitelial-Mesenquimal , Feminino , Humanos , Camundongos , Invasividade Neoplásica , Metástase Neoplásica , Transplante de Neoplasias , Fatores de Transcrição/genética , Via de Sinalização Wnt , beta Catenina/genéticaRESUMO
During malignant progression, epithelial cancer cells dissolve their cell-cell adhesion and gain invasive features. By virtue of its dual function, ß-catenin contributes to cadherin-mediated cell-cell adhesion, and it determines the transcriptional output of Wnt signaling: via its N terminus, it recruits the signaling coactivators Bcl9 and Pygopus, and via the C terminus, it interacts with the general transcriptional machinery. This duality confounds the simple loss-of-function analysis of Wnt signaling in cancer progression. In many cancer types including breast cancer, the functional contribution of ß-catenin's transcriptional activities, as compared to its adhesion functions, to tumor progression has remained elusive. Employing the mouse mammary tumor virus (MMTV)-PyMT mouse model of metastatic breast cancer, we compared the complete elimination of ß-catenin with the specific ablation of its signaling outputs in mammary tumor cells. Notably, the complete lack of ß-catenin resulted in massive apoptosis of mammary tumor cells. In contrast, the loss of ß-catenin's transcriptional activity resulted in a reduction of primary tumor growth, tumor invasion, and metastasis formation in vivo. These phenotypic changes were reflected by stalled cell cycle progression and diminished epithelial-mesenchymal transition (EMT) and cell migration of breast cancer cells in vitro. Transcriptome analysis revealed subsets of genes which were specifically regulated by ß-catenin's transcriptional activities upon stimulation with Wnt3a or during TGF-ß-induced EMT. Our results uncouple the signaling from the adhesion function of ß-catenin and underline the importance of Wnt/ß-catenin-dependent transcription in malignant tumor progression of breast cancer.
Assuntos
Adesão Celular/fisiologia , Neoplasias Mamárias Animais/metabolismo , Transdução de Sinais/fisiologia , Proteína Wnt3A/metabolismo , beta Catenina/metabolismo , Animais , Apoptose , Ciclo Celular , Movimento Celular , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Mamárias Animais/genética , Camundongos , Camundongos Transgênicos , Invasividade Neoplásica , Metástase Neoplásica , Transcriptoma , Fator de Crescimento Transformador beta/farmacologia , Proteína Wnt3A/genética , beta Catenina/genéticaRESUMO
Melanoma cells rely on developmental programs during tumor initiation and progression. Here we show that the embryonic stem cell (ESC) factor Sall4 is re-expressed in the Tyr::NrasQ61K; Cdkn2a-/- melanoma model and that its expression is necessary for primary melanoma formation. Surprisingly, while Sall4 loss prevents tumor formation, it promotes micrometastases to distant organs in this melanoma-prone mouse model. Transcriptional profiling and in vitro assays using human melanoma cells demonstrate that SALL4 loss induces a phenotype switch and the acquisition of an invasive phenotype. We show that SALL4 negatively regulates invasiveness through interaction with the histone deacetylase (HDAC) 2 and direct co-binding to a set of invasiveness genes. Consequently, SALL4 knock down, as well as HDAC inhibition, promote the expression of an invasive signature, while inhibition of histone acetylation partially reverts the invasiveness program induced by SALL4 loss. Thus, SALL4 appears to regulate phenotype switching in melanoma through an HDAC2-mediated mechanism.
Assuntos
Epigênese Genética , Melanoma/genética , Melanoma/patologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Fator de Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo , Acetilação , Animais , Sequência de Bases , Carcinogênese/genética , Carcinogênese/patologia , Adesão Celular/genética , Linhagem Celular Tumoral , Linhagem da Célula , Proliferação de Células , Proteínas de Ligação a DNA/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Histona Desacetilase 2/metabolismo , Histonas/metabolismo , Humanos , Melanócitos/metabolismo , Melanócitos/patologia , Camundongos Nus , Camundongos Transgênicos , Invasividade Neoplásica , Micrometástase de Neoplasia , Ligação Proteica , Carga TumoralRESUMO
Despite recent progress in recognizing the importance of mesenchymal cells for the homeostasis of the intestinal system, the current picture of how these cells communicate with the associated epithelial layer remains unclear. To describe the relevant cell populations in an unbiased manner, we carried out a single-cell transcriptome analysis of the adult murine colon, producing a high-quality atlas of matched colonic epithelium and mesenchyme. We identify two crypt-associated colonic fibroblast populations that are demarcated by different strengths of platelet-derived growth factor receptor A (Pdgfra) expression. Crypt-bottom fibroblasts (CBFs), close to the intestinal stem cells, express low levels of Pdgfra and secrete canonical Wnt ligands, Wnt potentiators, and bone morphogenetic protein (Bmp) inhibitors. Crypt-top fibroblasts (CTFs) exhibit high Pdgfra levels and secrete noncanonical Wnts and Bmp ligands. While the Pdgfralow cells maintain intestinal stem cell proliferation, the Pdgfrahigh cells induce differentiation of the epithelial cells. Our findings enhance our understanding of the crosstalk between various colonic epithelial cells and their associated mesenchymal signaling hubs along the crypt axis-placing differential Pdgfra expression levels in the spotlight of intestinal fibroblast identity.
Assuntos
Colo/metabolismo , Fibroblastos/classificação , Fibroblastos/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Colo/fisiologia , Células Epiteliais/metabolismo , Feminino , Perfilação da Expressão Gênica/métodos , Homeostase , Mucosa Intestinal/metabolismo , Intestinos/fisiologia , Mesoderma/citologia , Mesoderma/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Análise de Célula Única/métodos , Células-Tronco/citologia , Transcriptoma/genéticaRESUMO
BCL9 and PYGO are ß-catenin cofactors that enhance the transcription of Wnt target genes. They have been proposed as therapeutic targets to diminish Wnt signaling output in intestinal malignancies. Here we find that, in colorectal cancer cells and in developing mouse forelimbs, BCL9 proteins sustain the action of ß-catenin in a largely PYGO-independent manner. Our genetic analyses implied that BCL9 necessitates other interaction partners in mediating its transcriptional output. We identified the transcription factor TBX3 as a candidate tissue-specific member of the ß-catenin transcriptional complex. In developing forelimbs, both TBX3 and BCL9 occupy a large number of Wnt-responsive regulatory elements, genome-wide. Moreover, mutations in Bcl9 affect the expression of TBX3 targets in vivo, and modulation of TBX3 abundance impacts on Wnt target genes transcription in a ß-catenin- and TCF/LEF-dependent manner. Finally, TBX3 overexpression exacerbates the metastatic potential of Wnt-dependent human colorectal cancer cells. Our work implicates TBX3 as context-dependent component of the Wnt/ß-catenin-dependent transcriptional complex.
Assuntos
Proteínas com Domínio T/genética , Fatores de Transcrição/genética , Via de Sinalização Wnt , Animais , Feminino , Células HCT116 , Humanos , Masculino , Camundongos , Especificidade de Órgãos , Proteínas com Domínio T/metabolismo , Fatores de Transcrição/metabolismo , Células Tumorais Cultivadas , Peixe-ZebraRESUMO
Pygopus 2 (Pygo2) is a coactivator of Wnt/ß-catenin signaling that can bind bi- or trimethylated lysine 4 of histone-3 (H3K4me2/3) and participate in chromatin reading and writing. It remains unknown whether the Pygo2-H3K4me2/3 association has a functional relevance in breast cancer progression in vivo. To investigate the functional relevance of histone-binding activity of Pygo2 in malignant progression of breast cancer, we generated a knock-in mouse model where binding of Pygo2 to H3K4me2/3 was rendered ineffective. Loss of Pygo2-histone interaction resulted in smaller, differentiated, and less metastatic tumors, due, in part, to decreased canonical Wnt/ß-catenin signaling. RNA- and ATAC-sequencing analyses of tumor-derived cell lines revealed downregulation of TGFß signaling and upregulation of differentiation pathways such as PDGFR signaling. Increased differentiation correlated with a luminal cell fate that could be reversed by inhibition of PDGFR activity. Mechanistically, the Pygo2-histone interaction potentiated Wnt/ß-catenin signaling, in part, by repressing the expression of Wnt signaling antagonists. Furthermore, Pygo2 and ß-catenin regulated the expression of miR-29 family members, which, in turn, repressed PDGFR expression to promote dedifferentiation of wild-type Pygo2 mammary epithelial tumor cells. Collectively, these results demonstrate that the histone binding function of Pygo2 is important for driving dedifferentiation and malignancy of breast tumors, and loss of this binding activates various differentiation pathways that attenuate primary tumor growth and metastasis formation. Interfering with the Pygo2-H3K4me2/3 interaction may therefore serve as an attractive therapeutic target for metastatic breast cancer. SIGNIFICANCE: Pygo2 represents a potential therapeutic target in metastatic breast cancer, as its histone-binding capability promotes ß-catenin-mediated Wnt signaling and transcriptional control in breast cancer cell dedifferentiation, EMT, and metastasis.
Assuntos
Desdiferenciação Celular/fisiologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Histonas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Mamárias Experimentais/patologia , Animais , Progressão da Doença , Feminino , Técnicas de Introdução de Genes , Camundongos , Camundongos Endogâmicos C57BLRESUMO
The transcription factor Yin Yang 1 (YY1) plays an important role in human disease. It is often overexpressed in cancers and mutations can lead to a congenital haploinsufficiency syndrome characterized by craniofacial dysmorphisms and neurological dysfunctions, consistent with a role in brain development. Here, we show that Yy1 controls murine cerebral cortex development in a stage-dependent manner. By regulating a wide range of metabolic pathways and protein translation, Yy1 maintains proliferation and survival of neural progenitor cells (NPCs) at early stages of brain development. Despite its constitutive expression, however, the dependence on Yy1 declines over the course of corticogenesis. This is associated with decreasing importance of processes controlled by Yy1 during development, as reflected by diminished protein synthesis rates at later developmental stages. Thus, our study unravels a novel role for Yy1 as a stage-dependent regulator of brain development and shows that biosynthetic demands of NPCs dynamically change throughout development.
Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Células-Tronco Neurais/fisiologia , Fator de Transcrição YY1/fisiologia , Animais , Proliferação de Células/genética , Sobrevivência Celular/genética , Células Cultivadas , Embrião de Mamíferos , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Técnicas de Inativação de Genes , Redes e Vias Metabólicas/fisiologia , Camundongos , Camundongos Transgênicos , Modelos Animais , Cultura Primária de Células , RNA Interferente Pequeno/metabolismoRESUMO
Increasing evidence suggests that cancer cells highjack developmental programs for disease initiation and progression. Melanoma arises from melanocytes that originate during development from neural crest stem cells (NCSCs). Here, we identified the transcription factor Yin Yang 1 (Yy1) as an NCSCs regulator. Conditional deletion of Yy1 in NCSCs resulted in stage-dependent hypoplasia of all major neural crest derivatives due to decreased proliferation and increased cell death. Moreover, conditional ablation of one Yy1 allele in a melanoma mouse model prevented tumorigenesis, indicating a particular susceptibility of melanoma cells to reduced Yy1 levels. Combined RNA sequencing (RNA-seq), chromatin immunoprecipitation (ChIP)-seq, and untargeted metabolomics demonstrated that YY1 governs multiple metabolic pathways and protein synthesis in both NCSCs and melanoma. In addition to directly regulating a metabolic gene set, YY1 can act upstream of MITF/c-MYC as part of a gene regulatory network controlling metabolism. Thus, both NCSC development and melanoma formation depend on an intricate YY1-controlled metabolic program.
Assuntos
Melanoma/metabolismo , Melanoma/patologia , Crista Neural/citologia , Crista Neural/metabolismo , Fator de Transcrição YY1/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Fator de Transcrição YY1/deficiênciaRESUMO
CDC25 phosphatases play a key role in cell cycle transitions and are important targets for cancer therapy. Here, we set out to discover novel CDC25 inhibitors. Using a combination of computational methods, we defined a minimal common pharmacophore in established CDC25 inhibitors and performed virtual screening of a proprietary library. Based on the availability of crystal structures for CDC25A and CDC25B, we implemented a molecular docking strategy and carried out hit expansion/optimization. Enzymatic assays revealed that naphthoquinone scaffolds were the most promising CDC25 inhibitors among selected hits. At the molecular level, the compounds acted through a mixed-type mechanism of inhibition of phosphatase activity, involving reversible oxidation of cysteine residues. In 2D cell cultures, the compounds caused arrest of the cell cycle at the G1/S or at the G2/M transition. Mitotic markers analysis and time-lapse microscopy confirmed that CDK1 activity was impaired and that mitotic arrest was followed by death. Finally, the compounds induced differentiation, accompanied by decreased stemness properties, in intestinal crypt stem cell-derived Apc/K-Ras-mutant mouse organoids, and led to tumor regression and reduction of metastatic potential in zebrafish embryo xenografts used as in vivo model.
Assuntos
Proteína Quinase CDC2/genética , Neoplasias/genética , Conformação Proteica , Fosfatases cdc25/genética , Proteína da Polipose Adenomatosa do Colo/genética , Animais , Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/genética , Divisão Celular/genética , Cristalografia por Raios X , Inibidores Enzimáticos/farmacologia , Xenoenxertos , Humanos , Camundongos , Mitose/genética , Simulação de Acoplamento Molecular , Naftoquinonas/farmacologia , Neoplasias/patologia , Fosfatases cdc25/antagonistas & inibidores , Fosfatases cdc25/química , Fosfatases cdc25/ultraestruturaRESUMO
Human melanomas frequently harbor amplifications of EZH2. However, the contribution of EZH2 to melanoma formation has remained elusive. Taking advantage of murine melanoma models, we show that EZH2 drives tumorigenesis from benign BrafV600E- or NrasQ61K-expressing melanocytes by silencing of genes relevant for the integrity of the primary cilium, a signaling organelle projecting from the surface of vertebrate cells. Consequently, gain of EZH2 promotes loss of primary cilia in benign melanocytic lesions. In contrast, blockade of EZH2 activity evokes ciliogenesis and cilia-dependent growth inhibition in malignant melanoma. Finally, we demonstrate that loss of cilia enhances pro-tumorigenic WNT/ß-catenin signaling, and is itself sufficient to drive metastatic melanoma in benign cells. Thus, primary cilia deconstruction is a key process in EZH2-driven melanomagenesis.
Assuntos
Movimento Celular , Proliferação de Células , Cílios/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Melanócitos/metabolismo , Melanoma/metabolismo , Neoplasias Cutâneas/metabolismo , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Cílios/genética , Cílios/patologia , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Feminino , GTP Fosfo-Hidrolases/genética , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Metástase Linfática , Masculino , Melanócitos/patologia , Melanoma/genética , Melanoma/secundário , Proteínas de Membrana/genética , Camundongos Nus , Camundongos Transgênicos , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Via de Sinalização Wnt , beta Catenina/genética , beta Catenina/metabolismoRESUMO
Wnt-ß-catenin signalling plays a pivotal role in the homeostasis of the intestinal epithelium by promoting stem cell renewal1,2. In the small intestine, epithelial Paneth cells secrete Wnt ligands and thus adopt the function of the stem cell niche to maintain epithelial homeostasis3,4. It is unclear which cells comprise the stem cell niche in the colon. Here we show that subepithelial mesenchymal GLI1-expressing cells form this essential niche. Blocking Wnt secretion from GLI1-expressing cells prevents colonic stem cell renewal in mice: the stem cells are lost and, as a consequence, the integrity of the colonic epithelium is corrupted, leading to death. GLI1-expressing cells also play an important role in the maintenance of the small intestine, where they serve as a reserve Wnt source that becomes critical when Wnt secretion from epithelial cells is prevented. Our data suggest a mechanism by which the stem cell niche is adjusted to meet the needs of the intestine via adaptive changes in the number of mesenchymal GLI1-expressing cells.
Assuntos
Colo/citologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Nicho de Células-Tronco/fisiologia , Células-Tronco/metabolismo , Proteínas Wnt/metabolismo , Proteína GLI1 em Dedos de Zinco/metabolismo , Animais , Autorrenovação Celular , Feminino , Intestino Delgado/citologia , Intestino Delgado/metabolismo , Masculino , Camundongos , Células-Tronco/citologia , Via de Sinalização WntRESUMO
Human papillomavirus (HPV)-driven cutaneous squamous cell carcinoma (cSCC) is the most common cancer in immunosuppressed patients. Despite indications suggesting that HPV promotes genomic instability during cSCC development, the molecular pathways underpinning HPV-driven cSCC development remain unknown. We compared the transcriptome of HPV-driven mouse cSCC with normal skin and observed higher amounts of transcripts for Porcupine and WNT ligands in cSCC, suggesting a role for WNT signaling in cSCC progression. We confirmed increased Porcupine expression in human cSCC samples. Blocking the secretion of WNT ligands by the Porcupine inhibitor LGK974 significantly diminished initiation and progression of HPV-driven cSCC. Administration of LGK974 to mice with established cSCC resulted in differentiation of cancer cells and significant reduction of the cancer stem cell compartment. Thus, WNT/ß-catenin signaling is essential for HPV-driven cSCC initiation and progression as well as for maintaining the cancer stem cell niche. Interference with WNT secretion may thus represent a promising approach for therapeutic intervention.
Assuntos
Aciltransferases/metabolismo , Carcinoma de Células Escamosas/patologia , Proteínas de Membrana/metabolismo , Papillomaviridae/patogenicidade , Infecções por Papillomavirus/patologia , Neoplasias Cutâneas/patologia , Proteínas Wnt/metabolismo , Aciltransferases/antagonistas & inibidores , Animais , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/virologia , Inibidores Enzimáticos/farmacologia , Perfilação da Expressão Gênica , Humanos , Proteínas de Membrana/antagonistas & inibidores , Camundongos , Células-Tronco Neoplásicas/patologia , Papillomaviridae/genética , Pirazinas/farmacologia , Piridinas/farmacologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/virologia , Nicho de Células-Tronco/fisiologia , Via de Sinalização Wnt/genéticaRESUMO
The term "Wnt signaling" does not refer to one uniform signal transduction cascade. Instead, it describes the multiple discrete signals elicited by Wnt ligands following their interaction with distinct receptor complexes. The interaction of stem cells with niche cells is coordinated by the involvement of different signaling pathways, including Wnt signaling. The stem cell populations are highly sensitive to modulation of Wnt pathway activity. Wnt signaling is of paramount importance for stem cell self-renewal, survival, proliferation, differentiation, movement, and cell polarity. Aberrant activation of Wnt/ß-catenin signaling is associated with the pathology of many types of cancer, such as colorectal cancer and hepatocellular carcinoma. Importantly, although often initiated by mutation(s) downstream of the Wnt-receptor complex, the progression of colorectal cancer still seems to be augmented by Wnt ligand-mediated signaling. This chapter focuses on the role of Wnt ligands in the intestine and the liver during homeostasis and cancer.