Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neuroinflammation ; 8: 101, 2011 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-21846384

RESUMO

BACKGROUND: Cognitive impairment has been reported in human immune deficiency virus-1- (HIV-1-) infected patients as well as in HIV-1 transgenic (Tg) rats. This impairment has been linked to neuroinflammation, disturbed brain arachidonic acid (AA) metabolism, and synapto-dendritic injury. We recently reported upregulated brain AA metabolism in 7- to 9-month-old HIV-1 Tg rats. We hypothesized that these HIV-1 Tg rats also would show upregulated brain inflammatory and AA cascade markers and a deficit of synaptic proteins. METHODS: We measured protein and mRNA levels of markers of neuroinflammation and the AA cascade, as well as pro-apoptotic factors and synaptic proteins, in brains from 7- to 9-month-old HIV-1 Tg and control rats. RESULTS: Compared with control brain, HIV-1 Tg rat brain showed immunoreactivity to glycoprotein 120 and tat HIV-1 viral proteins, and significantly higher protein and mRNA levels of (1) the inflammatory cytokines interleukin-1ß and tumor necrosis factor α, (2) the activated microglial/macrophage marker CD11b, (3) AA cascade enzymes: AA-selective Ca2+-dependent cytosolic phospholipase A2 (cPLA2)-IVA, secretory sPLA2-IIA, cyclooxygenase (COX)-2, membrane prostaglandin E2 synthase, 5-lipoxygenase (LOX) and 15-LOX, cytochrome p450 epoxygenase, and (4) transcription factor NF-κBp50 DNA binding activity. HIV-1 Tg rat brain also exhibited signs of cell injury, including significantly decreased levels of brain-derived neurotrophic factor (BDNF) and drebrin, a marker of post-synaptic excitatory dendritic spines. Expression of Ca2+-independent iPLA2-VIA and COX-1 was unchanged. CONCLUSIONS: HIV-1 Tg rats show elevated brain markers of neuroinflammation and AA metabolism, with a deficit in several synaptic proteins. These changes are associated with viral proteins and may contribute to cognitive impairment. The HIV-1 Tg rat may be a useful model for understanding progression and treatment of cognitive impairment in HIV-1 patients.


Assuntos
Ácido Araquidônico/metabolismo , Encefalite/metabolismo , HIV-1/genética , Ratos Transgênicos , Transdução de Sinais/fisiologia , Sinapses/química , Animais , Araquidonato 15-Lipoxigenase/metabolismo , Araquidonato 5-Lipoxigenase/genética , Araquidonato 5-Lipoxigenase/metabolismo , Ácido Araquidônico/química , Biomarcadores/metabolismo , Transtornos Cognitivos/patologia , Transtornos Cognitivos/fisiopatologia , Encefalite/patologia , HIV-1/metabolismo , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Masculino , Ratos , Ratos Endogâmicos F344 , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
2.
J Lipid Res ; 51(5): 1049-56, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20040630

RESUMO

Neuroinflammation, caused by 6 days of intracerebroventricular infusion of a low dose of lipopolysaccharide (LPS; 0.5 ng/h), stimulates brain arachidonic acid (AA) metabolism in rats, but 6 weeks of lithium pretreatment reduces this effect. To further understand this action of lithium, we measured concentrations of eicosanoids and docosanoids generated from AA and docosahexaenoic acid (DHA), respectively, in high-energy microwaved rat brain using LC/MS/MS and two doses of LPS. In rats fed a lithium-free diet, low (0.5 ng/h)- or high (250 ng/h)-dose LPS compared with artificial cerebrospinal fluid increased brain unesterified AA and prostaglandin E(2) concentrations and activities of AA-selective Ca(2+)-dependent cytosolic phospholipase A(2) (cPLA(2))-IV and Ca(2+)-dependent secretory sPLA(2). LiCl feeding prevented these increments. Lithium had a significant main effect by increasing brain concentrations of lipoxygenase-derived AA metabolites, 5- hydroxyeicosatetraenoic acid (HETE), 5-oxo-eicosatetranoic acid, and 17-hydroxy-DHA by 1.8-, 4.3- and 1.9-fold compared with control diet. Lithium also increased 15-HETE in high-dose LPS-infused rats. Ca(2+)-independent iPLA(2)-VI activity and unesterified DHA and docosapentaenoic acid (22:5n-3) concentrations were unaffected by LPS or lithium. This study demonstrates, for the first time, that lithium can increase brain 17-hydroxy-DHA formation, indicating a new and potentially important therapeutic action of lithium.


Assuntos
Ácido Araquidônico/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Lítio/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Transtorno Bipolar/tratamento farmacológico , Peso Corporal/efeitos dos fármacos , Encéfalo/efeitos da radiação , Cateterismo , Gorduras na Dieta/análise , Relação Dose-Resposta a Droga , Esterificação , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/fisiopatologia , Lítio/uso terapêutico , Masculino , Micro-Ondas , Ratos , Fatores de Tempo
3.
J Cereb Blood Flow Metab ; 29(3): 648-58, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19142197

RESUMO

Nicotine exerts its central effects by activating pre- and postsynaptic nicotinic acetylcholine receptors (nAChRs). Presynaptic nAChRs modulate the release of many neurotransmitters that bind to postsynaptic receptors. These may be coupled to the activation of cytosolic phospholipase A(2) (cPLA(2)), which hydrolyzes arachidonic acid (AA) from membrane phospholipids. We hypothesized that nicotine would modify brain signaling involving AA by binding to nAChRs. Nicotine (0.1 mg/kg, subcutaneously) or saline was injected 2 or 10 mins before infusing [1-(14)C]AA in unanesthetized rats. The AA incorporation coefficient k(*) (a marker of the AA signal) was measured in 80 brain regions by quantitative autoradiography. Nicotine, compared to saline, when administrated 2 mins before [1-(14)C]AA infusion, significantly decreased k(*) for AA in 26 regions, including cerebral cortex, thalamus, and habenula-interpeduncular regions, by 13% to 45%. These decreases could be entirely prevented by pretreatment with mecamylamine (1.0 mg/kg, subcutaneously). When administered 10 mins before [1-(14)C]AA infusion, nicotine did not alter any value of k(*). In summary, nicotine given to unanesthetized rats rapidly reduces signaling involving AA in brain regions containing nAChRs, likely by modulating the presynaptic release of neurotransmitters. The effect shows rapid desensitization and is produced at a nicotine dose equivalent to smoking one cigarette in humans.


Assuntos
Ácido Araquidônico/metabolismo , Encéfalo/efeitos dos fármacos , Nicotina/farmacologia , Animais , Ácido Araquidônico/administração & dosagem , Ácido Araquidônico/sangue , Encéfalo/metabolismo , Dinoprostona/metabolismo , Masculino , Mecamilamina/farmacologia , Nicotina/administração & dosagem , Ratos , Ratos Endogâmicos F344 , Receptores Nicotínicos/metabolismo
4.
J Eukaryot Microbiol ; 53(6): 435-44, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17123407

RESUMO

The opportunistic pathogen Pneumocystis causes a type of pneumonia in individuals with defective immune systems such as AIDS patients. Atovaquone, an analog of ubiquinone (coenzyme Q [CoQ]), is effective in clearing mild to moderate cases of the infection. Rat-derived Pneumocystis carinii was the first organism in which CoQ synthesis was clearly demonstrated to occur in both mitochondrial and microsomal subcellular fractions. Atovaquone inhibits microsomal CoQ synthesis with no effect on mitochondrial CoQ synthesis. We here report on additional studies evaluating CoQ synthesis and its regulation in the organism. Buparvaquone also inhibited CoQ synthesis and it reduced the synthesis of all four CoQ homologs in the microsomal but not the mitochondrial fraction. Glyphosate, which inhibits a reaction in the de novo synthesis of the benzoquinone moiety of CoQ reduced cellular ATP levels. Bacterial and plant quinones, and several chemically synthesized phenolics, flavanoids, and naphthoquinones that inhibit electron transport in other organisms were shown to reduce CoQ synthesis in P. carinii. The inhibitory action of naphthoquinone compounds appeared to depend on their molecular size and structural flexibility rather than redox potential. Results of experiments examining the synthesis of the polyprenyl chain of CoQ were consistent with negative feedback control of CoQ synthesis. These studies on P. carinii suggest that cellular sites and the control of CoQ synthesis in different organisms and cell types might be more diverse than previously thought.


Assuntos
Antifúngicos/farmacologia , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Naftoquinonas/farmacologia , Pneumocystis carinii/metabolismo , Ubiquinona/biossíntese , Animais , Humanos , Pneumocystis carinii/genética , Ratos , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo
5.
Eukaryot Cell ; 4(8): 1483-92, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16087753

RESUMO

The lung pathogen Pneumocystis spp. is the causative agent of a type of pneumonia that can be fatal in people with defective immune systems, such as AIDS patients. Atovaquone, an analog of ubiquinone (coenzyme Q [CoQ]), inhibits mitochondrial electron transport and is effective in clearing mild to moderate cases of the infection. Purified rat-derived intact Pneumocystis carinii cells synthesize de novo four CoQ homologs, CoQ7, CoQ8, CoQ9, and CoQ10, as demonstrated by the incorporation of radiolabeled precursors of both the benzoquinone ring and the polyprenyl chain. A central step in CoQ biosynthesis is the condensation of p-hydroxybenzoic acid (PHBA) with a long-chain polyprenyl diphosphate molecule. In the present study, CoQ biosynthesis was evaluated by the incorporation of PHBA into completed CoQ molecules using P. carinii cell-free preparations. CoQ synthesis in whole-cell homogenates was not affected by the respiratory inhibitors antimycin A and dicyclohexylcarbodiimide but was diminished by atovaquone. Thus, atovaquone has inhibitory activity on both electron transport and CoQ synthesis in this pathogen. Furthermore, both the mitochondrial and microsomal fractions were shown to synthesize de novo all four P. carinii CoQ homologs. Interestingly, atovaquone inhibited microsomal CoQ synthesis, whereas it had no effect on mitochondrial CoQ synthesis. This is the first pathogenic eukaryotic microorganism in which biosynthesis of CoQ molecules from the initial PHBA:polyprenyl transferase reaction has been unambiguously shown to occur in two distinct compartments of the same cell.


Assuntos
Microssomos/enzimologia , Mitocôndrias/enzimologia , Naftoquinonas/farmacologia , Pneumocystis/metabolismo , Ubiquinona/biossíntese , Animais , Antimicina A/farmacologia , Atovaquona , Benzfetamina/análogos & derivados , Benzfetamina/metabolismo , Coenzimas , Dicicloexilcarbodi-Imida/farmacologia , Relação Dose-Resposta a Droga , Farmacorresistência Fúngica , Feminino , Concentração de Íons de Hidrogênio , Cinética , Microscopia de Fluorescência , Mitocôndrias/metabolismo , Pneumocystis/efeitos dos fármacos , Ratos , Sensibilidade e Especificidade , Frações Subcelulares/enzimologia , Frações Subcelulares/metabolismo , Temperatura , Fatores de Tempo , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA