Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 94(5)2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37166246

RESUMO

We describe the commissioning of a new electron-ion coincidence spectrometer used to diagnose the photon beam from a plane grating monochromator beamline at the ASTRID2 synchrotron radiation facility. The spectrometer allows determination of the absolute photon intensity by calibration to the photoabsorption cross sections of known gases, such as the rare gases Ar, Kr, and Xe presented here. The spectrometer operates at very low pressure (∼10-8-10-9 mbar) and-due to the coincidence electron-ion detection scheme-the detector efficiencies can be determined routinely; hence, the spectrometer can be recalibrated swiftly. By variation of a single potential of the spectrometer, the content of higher order radiation in the monochromatized synchrotron radiation can be analyzed. The layout and operation of the synchrotron radiation beamline at ASTRID2 and its additional photon diagnostic units are additionally described.

2.
Phys Rev Lett ; 115(5): 050602, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-26274405

RESUMO

Based on a given time series, data-driven Langevin modeling aims to construct a low-dimensional dynamical model of the underlying system. When dealing with physical data as provided by, e.g., all-atom molecular dynamics simulations, effects due to small damping may be important to correctly describe the statistics (e.g., the energy landscape) and the dynamics (e.g., transition times). To include these effects in a dynamical model, an algorithm that propagates a second-order Langevin scheme is derived, which facilitates the treatment of multidimensional data. Adopting extensive molecular dynamics simulations of a peptide helix, a five-dimensional model is constructed that successfully forecasts the complex structural dynamics of the system. Neglect of small damping effects, on the other hand, is shown to lead to significant errors and inconsistencies.


Assuntos
Modelos Teóricos , Simulação de Dinâmica Molecular , Peptídeos/química , Algoritmos , Ácidos Aminoisobutíricos/química , Cadeias de Markov , Estrutura Secundária de Proteína
3.
Proc Natl Acad Sci U S A ; 111(35): 12895-900, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25136128

RESUMO

Glycosphingolipids are important structural constituents of cellular membranes. They are involved in the formation of nanodomains ("lipid rafts"), which serve as important signaling platforms. Invasive bacterial pathogens exploit these signaling domains to trigger actin polymerization for the bending of the plasma membrane and the engulfment of the bacterium--a key process in bacterial uptake. However, it is unknown whether glycosphingolipids directly take part in the membrane invagination process. Here, we demonstrate that a "lipid zipper," which is formed by the interaction between the bacterial surface lectin LecA and its cellular receptor, the glycosphingolipid Gb3, triggers plasma membrane bending during host cell invasion of the bacterium Pseudomonas aeruginosa. In vitro experiments with Gb3-containing giant unilamellar vesicles revealed that LecA/Gb3-mediated lipid zippering was sufficient to achieve complete membrane engulfment of the bacterium. In addition, theoretical modeling elucidated that the adhesion energy of the LecA-Gb3 interaction is adequate to drive the engulfment process. In cellulo experiments demonstrated that inhibition of the LecA/Gb3 lipid zipper by either lecA knockout, Gb3 depletion, or application of soluble sugars that interfere with LecA binding to Gb3 significantly lowered P. aeruginosa uptake by host cells. Of note, membrane engulfment of P. aeruginosa occurred independently of actin polymerization, thus corroborating that lipid zippering alone is sufficient for this crucial first step of bacterial host-cell entry. Our study sheds new light on the impact of glycosphingolipids in the cellular invasion of bacterial pathogens and provides a mechanistic explication of the initial uptake processes.


Assuntos
Actinas/metabolismo , Glicoesfingolipídeos/metabolismo , Microdomínios da Membrana/microbiologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/metabolismo , Adesinas Bacterianas/metabolismo , Aderência Bacteriana/fisiologia , Membrana Celular/metabolismo , Membrana Celular/microbiologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Glicolipídeos/metabolismo , Bicamadas Lipídicas/metabolismo , Microdomínios da Membrana/metabolismo , Modelos Biológicos , Transdução de Sinais/fisiologia , Esfingolipídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA