Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 13(10): e2302607, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38118064

RESUMO

Stem cells are regulated not only by biochemical signals but also by biophysical properties of extracellular matrix (ECM). The ECM is constantly monitored and remodeled because the fate of stem cells can be misdirected when the mechanical interaction between cells and ECM is imbalanced. A well-defined ECM model for bone marrow-derived human mesenchymal stem cells (hMSCs) based on supramolecular hydrogels containing reversible host-guest crosslinks is fabricated. The stiffness (Young's modulus E) of the hydrogels can be switched reversibly by altering the concentration of non-cytotoxic, free guest molecules dissolved in the culture medium. Fine-adjustment of substrate stiffness enables the authors to determine the critical stiffness level E* at which hMSCs turn the mechano-sensory machinery on or off. Next, the substrate stiffness across E* is switched and the dynamic adaptation characteristics such as morphology, traction force, and YAP/TAZ signaling of hMSCs are monitored. These data demonstrate the instantaneous switching of traction force, which is followed by YAP/TAZ signaling and morphological adaptation. Periodical switching of the substrate stiffness across E* proves that frequent applications of mechanical stimuli drastically suppress hMSC proliferation. Mechanical stimulation across E* level using dynamic hydrogels is a promising strategy for the on-demand control of hMSC transcription and proliferation.


Assuntos
Hidrogéis , Células-Tronco Mesenquimais , Humanos , Hidrogéis/farmacologia , Hidrogéis/química , Transdução de Sinais , Matriz Extracelular , Módulo de Elasticidade
2.
Elife ; 102021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34374341

RESUMO

Nonmuscle myosin II (NM II) is an integral part of essential cellular processes, including adhesion and migration. Mammalian cells express up to three isoforms termed NM IIA, B, and C. We used U2OS cells to create CRISPR/Cas9-based knockouts of all three isoforms and analyzed the phenotypes on homogenously coated surfaces, in collagen gels, and on micropatterned substrates. In contrast to homogenously coated surfaces, a structured environment supports a cellular phenotype with invaginated actin arcs even in the absence of NM IIA-induced contractility. A quantitative shape analysis of cells on micropatterns combined with a scale-bridging mathematical model reveals that NM IIA is essential to build up cellular tension during initial stages of force generation, while NM IIB is necessary to elastically stabilize NM IIA-generated tension. A dynamic cell stretch/release experiment in a three-dimensional scaffold confirms these conclusions and in addition reveals a novel role for NM IIC, namely the ability to establish tensional homeostasis.


Assuntos
Elasticidade , Miosina Tipo II/metabolismo , Miosina não Muscular Tipo IIA/metabolismo , Miosina não Muscular Tipo IIB/metabolismo , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Homeostase , Humanos , Modelos Teóricos , Miosina Tipo II/classificação , Miosina Tipo II/genética , Miosina não Muscular Tipo IIA/genética , Miosina não Muscular Tipo IIB/genética , Isoformas de Proteínas
3.
Acta Biomater ; 111: 254-266, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32434077

RESUMO

Multiple particle tracking (MPT) microrheology was employed for monitoring the development of extracellular matrix (ECM) mechanical properties in the direct microenvironment of living cells. A customized setup enabled us to overcome current limitations: (i) Continuous measurements were enabled using a cell culture chamber, with this, matrix remodeling by fibroblasts in the heterogeneous environment of macroporous scaffolds was monitored continuously. (ii) Employing tracer laden porous scaffolds for seeding human mesenchymal stem cells (hMSCs), we followed conventional differentiation protocols. Thus, we were, for the first time able to study the massive alterations in ECM elasticity during hMSC differentiation. (iii) MPT measurements in 2D cell cultures were enabled using a long distance objective. Exemplarily, local mechanical properties of the ECM in human umbilical vein endothelial cell (HUVEC) cultures, that naturally form 2D layers, were investigated scaffold-free. Using our advanced setup, we measured local, apparent elastic moduli G0,app in a range between 0.08 and 60 Pa. For fibroblasts grown in collagen-based scaffolds, a continuous decrease of local matrix elasticity resulted during the first 10 hours after seeding. The osteogenic differentiation of hMSC cells cultivated in similar scaffolds, led to an increase of G0,app by 100 %, whereas after adipogenic differentiation it was reduced by 80 %. The local elasticity of ECM that was newly secreted by HUVECs increased significantly upon addition of protease inhibitor and in high glucose conditions even a twofold increase in G0,app was observed. The combination of these advanced methods opens up new avenues for a broad range of investigations regarding cell-matrix interactions and the propagation of ECM mechanical properties in complex biological systems. STATEMENT OF SIGNIFICANCE: Cells sense the elasticity of their environment on a micrometer length scale. For studying the local elasticity of extracellular matrix (ECM) in the direct environment of living cells, we employed an advanced multipleparticle tracking microrheology setup. MPT is based on monitoring the Brownian motion oftracer particles, which is restricted by the surrounding network. Network elasticity can thusbe quantified. Overcoming current limitations, we realized continuous investigations of ECM elasticityduring fibroblast growth. Furthermore, MPT measurements of stem cell ECM showed ECMstiffening during osteogenic differentiation and softening during adipogenic differentiation.Finally, we characterized small amounts of delicate ECM newly secreted in scaffold-freecultures of endothelial cells, that naturally form 2D layers.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Diferenciação Celular , Microambiente Celular , Matriz Extracelular , Humanos , Alicerces Teciduais
4.
Nat Commun ; 10(1): 5522, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31797918

RESUMO

Biomedical applications require substrata that allow for the grafting, colonization and control of eukaryotic cells. Currently available materials are often limited by insufficient possibilities for the integration of biological functions and means for tuning the mechanical properties. We report on tailorable nanocomposite materials in which silica nanoparticles are interwoven with carbon nanotubes by DNA polymerization. The modular, well controllable and scalable synthesis yields materials whose composition can be gradually adjusted to produce synergistic, non-linear mechanical stiffness and viscosity properties. The materials were exploited as substrata that outperform conventional culture surfaces in the ability to control cellular adhesion, proliferation and transmigration through the hydrogel matrix. The composite materials also enable the construction of layered cell architectures, the expansion of embryonic stem cells by simplified cultivation methods and the on-demand release of uniformly sized stem cell spheroids.


Assuntos
Materiais Revestidos Biocompatíveis/química , Nanocompostos/química , Nanotubos de Carbono/química , Dióxido de Silício/química , Adesão Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/farmacologia , DNA/química , DNA/genética , DNA/metabolismo , Humanos , Hidrogéis/química , Células MCF-7 , Teste de Materiais/métodos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nanocompostos/ultraestrutura , Resistência à Tração , Viscosidade
5.
Oncotarget ; 8(56): 95896-95913, 2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-29221175

RESUMO

TRPM8 is a Ca2+-permeable nonselective cation channel belonging to the melastatin sub-group of the transient receptor potential (TRP) family. TRPM8 is aberrantly overexpressed in a variety of tumor entities including glioblastoma multiforme where it reportedly contributes to tumor invasion. The present study aimed to disclose further functions of TRPM8 in glioma biology in particular upon cell injury by ionizing radiation. To this end, TCGA data base was queried to expose the TRPM8 mRNA abundance in human glioblastoma specimens and immunoblotting was performed to analyze the TRPM8 protein abundance in primary cultures of human glioblastoma. Moreover, human glioblastoma cell lines were irradiated with 6 MV photons and TRPM8 channels were targeted pharmacologically or by RNA interference. TRPM8 abundance, Ca2+ signaling and resulting K+ channel activity, chemotaxis, cell migration, clonogenic survival, DNA repair, apoptotic cell death, and cell cycle control were determined by qRT-PCR, fura-2 Ca2+ imaging, patch-clamp recording, transfilter migration assay, wound healing assay, colony formation assay, immunohistology, flow cytometry, and immunoblotting. As a result, human glioblastoma upregulates TRPM8 channels to variable extent. TRPM8 inhibition or knockdown slowed down cell migration and chemotaxis, attenuated DNA repair and clonogenic survival, triggered apoptotic cell death, impaired cell cycle and radiosensitized glioblastoma cells. Mechanistically, ionizing radiation activated and upregulated TRPM8-mediated Ca2+ signaling that interfered with cell cycle control probably via CaMKII, cdc25C and cdc2. Combined, our data suggest that TRPM8 channels contribute to spreading, survival and radioresistance of human glioblastoma and, therefore, might represent a promising target in future anti-glioblastoma therapy.

6.
Biomaterials ; 69: 121-32, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26283159

RESUMO

Bio-functionalized three-dimensional (3D) structures fabricated by direct laser writing (DLW) are structurally and mechanically well-defined and ideal for systematically investigating the influence of three-dimensionality and substrate stiffness on cell behavior. Here, we show that different fibroblast-like and epithelial cell lines maintain normal proliferation rates and form functional cell-matrix contacts in DLW-fabricated 3D scaffolds of different mechanics and geometry. Furthermore, the molecular composition of cell-matrix contacts forming in these 3D micro-environments and under conventional 2D culture conditions is identical, based on the analysis of several marker proteins (paxillin, phospho-paxillin, phospho-focal adhesion kinase, vinculin, ß1-integrin). However, fibroblast-like and epithelial cells differ markedly in the way they adapt their total cell and nuclear volumes in 3D environments. While fibroblast-like cell lines display significantly increased cell and nuclear volumes in 3D substrates compared to 2D substrates, epithelial cells retain similar cell and nuclear volumes in 2D and 3D environments. Despite differential cell volume regulation between fibroblasts and epithelial cells in 3D environments, the nucleus-to-cell (N/C) volume ratios remain constant for all cell types and culture conditions. Thus, changes in cell and nuclear volume during the transition from 2D to 3D environments are strongly cell type-dependent, but independent of scaffold stiffness, while cells maintain the N/C ratio regardless of culture conditions.


Assuntos
Técnicas de Cultura de Células/instrumentação , Células Epiteliais/citologia , Fibroblastos/citologia , Alicerces Teciduais/química , Animais , Adesão Celular , Linhagem Celular , Proliferação de Células , Tamanho Celular , Desenho de Equipamento , Matriz Extracelular/química , Lasers , Camundongos , Ratos
7.
Semin Cell Dev Biol ; 35: 126-35, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25084320

RESUMO

Axonal projections between two populations of neurons, which preserve neighborhood relationships, are called topographic. They are ubiquitous in the brain. The development of the retinotectal projection, mapping the retinal output onto the roof of the midbrain, has been studied for decades as a model system. The rigid precision of normal retinotopic mapping has prompted the chemoaffinity hypothesis, positing axonal targeting to be based on fixed biochemical affinities between fibers and targets. In addition, however, abundant evidence has been gathered mainly in the 1970s and 80s that the mapping can adjust to variegated targets with stunning flexibility demonstrating the extraordinary robustness of the guidance process. The identification of ephrins and Eph-receptors as the underlying molecular cues has mostly been interpreted as supporting the fiber-target chemoaffinity hypothesis, while the evidence on mapping robustness has largely been neglected. By having a fresh look on the old data, we expound that they indicate, in addition to fiber-target chemoaffinity, the existence of a second autonomous guidance influence, which we call fiber-fiber chemoaffinity. Classical in vitro observations suggest both influences be composed of opposing monofunctional guidance activities. Based on the molecular evidence, we propose that those might be ephrin/Eph forward and reverse signaling, not only in fiber-target but also in fiber-fiber interactions. In fact, computational models based on this assumption can reconcile the seemingly conflicting findings on rigid and flexible topographic mapping. Supporting the suggested parsimonious and powerful mechanism, they contribute to an understanding of the evolutionary success of robust topographic mass wiring of axons.


Assuntos
Axônios/fisiologia , Simulação por Computador , Modelos Neurológicos , Transdução de Sinais/fisiologia , Animais , Mapeamento Encefálico/métodos , Humanos , Receptores da Família Eph/metabolismo
8.
J Cell Biol ; 205(2): 265-81, 2014 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-24778313

RESUMO

Integrin-dependent cell adhesion and spreading are critical for morphogenesis, tissue regeneration, and immune defense but also tumor growth. However, the mechanisms that induce integrin-mediated cell spreading and provide mechanosensing on different extracellular matrix conditions are not fully understood. By expressing ß3-GFP-integrins with enhanced talin-binding affinity, we experimentally uncoupled integrin activation, clustering, and substrate binding from its function in cell spreading. Mutational analysis revealed Tyr747, located in the first cytoplasmic NPLY(747) motif, to induce spreading and paxillin adapter recruitment to substrate- and talin-bound integrins. In addition, integrin-mediated spreading, but not focal adhesion localization, was affected by mutating adjacent sequence motifs known to be involved in kindlin binding. On soft, spreading-repellent fibronectin substrates, high-affinity talin-binding integrins formed adhesions, but normal spreading was only possible with integrins competent to recruit the signaling adapter protein paxillin. This proposes that integrin-dependent cell-matrix adhesion and cell spreading are independently controlled, offering new therapeutic strategies to modify cell behavior in normal and pathological conditions.


Assuntos
Integrina beta3/metabolismo , Mecanotransdução Celular/fisiologia , Talina/metabolismo , Motivos de Aminoácidos , Animais , Células COS , Adesão Celular/fisiologia , Chlorocebus aethiops , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Integrina beta3/genética , Camundongos , Células NIH 3T3 , Paxilina/genética , Paxilina/metabolismo , Talina/genética
9.
Biomaterials ; 35(2): 611-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24140047

RESUMO

Transmigrating cells often need to deform cell body and nucleus to pass through micrometer-sized pores in extracellular matrix scaffolds. Furthermore, chemoattractive signals typically guide transmigration, but the precise interplay between mechanical constraints and signaling mechanisms during 3D matrix invasion is incompletely understood and may differ between cell types. Here, we used Direct Laser Writing to fabricate 3D cell culture scaffolds with adjustable pore sizes (2-10 µm) on a microporous carrier membrane for applying diffusible chemical gradients. Mouse embryonic fibroblasts invade 10 µm pore scaffolds even in absence of chemoattractant, but invasion is significantly enhanced by knockout of lamin A/C, a known regulator of cell nucleus stiffness. Nuclear stiffness thus constitutes a major obstacle to matrix invasion for fibroblasts, but chemotaxis signals are not essential. In contrast, epithelial A549 cells do not enter 10 µm pores even when lamin A/C levels are reduced, but readily enter scaffolds with pores down to 7 µm in presence of chemoattractant (serum). Nuclear stiffness is therefore not a prime regulator of matrix invasion in epithelial cells, which instead require chemoattractive signals. Microstructured scaffolds with adjustable pore size and diffusible chemical gradients are thus a valuable tool to dissect cell-type specific mechanical and signaling aspects during matrix invasion.


Assuntos
Materiais Biocompatíveis/química , Matriz Extracelular/metabolismo , Polímeros/química , Alicerces Teciduais/química , Animais , Linhagem Celular Tumoral , Células Epiteliais/citologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Processamento de Imagem Assistida por Computador , Teste de Materiais , Camundongos , Porosidade , Transfecção
11.
PLoS One ; 8(1): e54850, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23372781

RESUMO

Focal contacts act as mechanosensors allowing cells to respond to their biomechanical environment. Force transmission through newly formed contact sites is a highly dynamic process requiring a stable link between the intracellular cytoskeleton and the extracellular environment. To simultaneously investigate cellular traction forces in several individual maturing adhesion sites within the same cell, we established a custom-built multiple trap optical tweezers setup. Beads functionalized with fibronectin or RGD-peptides were placed onto the apical surface of a cell and trapped with a maximum force of 160 pN. Cells form adhesion contacts around the beads as demonstrated by vinculin accumulation and start to apply traction forces after 30 seconds. Force transmission was found to strongly depend on bead size, surface density of integrin ligands and bead location on the cell surface. Highest traction forces were measured for beads positioned on the leading edge. For mouse embryonic fibroblasts, traction forces acting on single beads are in the range of 80 pN after 5 minutes. If two beads were positioned parallel to the leading edge and with a center-to-center distance less than 10 µm, traction forces acting on single beads were reduced by 40%. This indicates a spatial and temporal coordination of force development in closely related adhesion sites. We also used our setup to compare traction forces, retrograde transport velocities, and migration velocities between two cell lines (mouse melanoma and fibroblasts) and primary chick fibroblasts. We find that maximal force development differs considerably between the three cell types with the primary cells being the strongest. In addition, we observe a linear relation between force and retrograde transport velocity: a high retrograde transport velocity is associated with strong cellular traction forces. In contrast, migration velocity is inversely related to traction forces and retrograde transport velocity.


Assuntos
Adesões Focais/fisiologia , Pinças Ópticas , Animais , Transporte Biológico , Movimento Celular , Células Cultivadas , Fibroblastos/metabolismo , Mecanotransdução Celular , Camundongos
12.
Angew Chem Int Ed Engl ; 51(36): 9181-4, 2012 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-22890544

RESUMO

Making light work of ligation: A novel method utilizes light for oxime ligation chemistry. A quantitative, low-energy photodeprotection generates aldehyde, which subsequently reacts with aminooxy moieties. The spatial control allows patterning on surfaces with a fluoro marker and GRGSGR peptide, and can be imaged by time-of-flight secondary-ion mass spectrometry.


Assuntos
Oximas/química , Sequência de Aminoácidos , Química Click , Peptídeos/química , Espectrometria de Massa de Íon Secundário , Propriedades de Superfície , Raios Ultravioleta
13.
J Biol Chem ; 287(16): 13239-48, 2012 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-22351762

RESUMO

Sialic acids (Sia) form the nonreducing end of the bulk of cell surface-expressed glycoconjugates. They are, therefore, major elements in intercellular communication processes. The addition of Sia to glycoconjugates requires metabolic activation to CMP-Sia, catalyzed by CMP-Sia synthetase (CMAS). This highly conserved enzyme is located in the cell nucleus in all vertebrates investigated to date, but its nuclear function remains elusive. Here, we describe the identification and characterization of two Cmas enzymes in Danio rerio (dreCmas), one of which is exclusively localized in the cytosol. We show that the two cmas genes most likely originated from the third whole genome duplication, which occurred at the base of teleost radiation. cmas paralogues were maintained in fishes of the Otocephala clade, whereas one copy got subsequently lost in Euteleostei (e.g. rainbow trout). In zebrafish, the two genes exhibited a distinct spatial expression pattern. The products of these genes (dreCmas1 and dreCmas2) diverged not only with respect to subcellular localization but also in substrate specificity. Nuclear dreCmas1 favored N-acetylneuraminic acid, whereas the cytosolic dreCmas2 showed highest affinity for 5-deamino-neuraminic acid. The subcellular localization was confirmed for the endogenous enzymes in fractionated zebrafish lysates. Nuclear entry of dreCmas1 was mediated by a bipartite nuclear localization signal, which seemed irrelevant for other enzymatic functions. With the current demonstration that in zebrafish two subfunctionalized cmas paralogues co-exist, we introduce a novel and unique model to detail the roles that CMAS has in the nucleus and in the sialylation pathways of animal cells.


Assuntos
Evolução Molecular , N-Acilneuraminato Citidililtransferase/genética , Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Núcleo Celular/enzimologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Glicosilação , Camundongos , Dados de Sequência Molecular , Ácido N-Acetilneuramínico/metabolismo , N-Acilneuraminato Citidililtransferase/química , N-Acilneuraminato Citidililtransferase/metabolismo , Células NIH 3T3 , RNA Mensageiro/genética , Especificidade por Substrato/fisiologia , Peixe-Zebra/embriologia
15.
EMBO J ; 30(14): 2920-33, 2011 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-21673655

RESUMO

Netrin-1 induces repulsive axon guidance by binding to the mammalian Unc5 receptor family (Unc5A-Unc5D). Mouse genetic analysis of selected members of the Unc5 family, however, revealed essential functions independent of Netrin-1, suggesting the presence of other ligands. Unc5B was recently shown to bind fibronectin and leucine-rich transmembrane protein-3 (FLRT3), although the relevance of this interaction for nervous system development remained unclear. Here, we show that the related Unc5D receptor binds specifically to another FLRT protein, FLRT2. During development, FLRT2/3 ectodomains (ECDs) are shed from neurons and act as repulsive guidance molecules for axons and somata of Unc5-positive neurons. In the developing mammalian neocortex, Unc5D is expressed by neurons in the subventricular zone (SVZ), which display delayed migration to the FLRT2-expressing cortical plate (CP). Deletion of either FLRT2 or Unc5D causes a subset of SVZ-derived neurons to prematurely migrate towards the CP, whereas overexpression of Unc5D has opposite effects. Hence, the shed FLRT2 and FLRT3 ECDs represent a novel family of chemorepellents for Unc5-positive neurons and FLRT2/Unc5D signalling modulates cortical neuron migration.


Assuntos
Glicoproteínas de Membrana/fisiologia , Neurônios/metabolismo , Receptores de Superfície Celular/fisiologia , Animais , Axônios/metabolismo , Movimento Celular , Células Cultivadas , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Immunoblotting , Integrases/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Crescimento Neural/metabolismo , Receptores de Netrina , Netrina-1 , Neurônios/citologia , Ligação Proteica , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo
16.
Biophys J ; 95(7): 3488-96, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18599642

RESUMO

For both cells and tissues, shape is closely correlated with function presumably via geometry-dependent distribution of tension. In this study, we identify common shape determinants spanning cell and tissue scales. For cells whose sites of adhesion are restricted to small adhesive islands on a micropatterned substrate, shape resembles a sequence of inward-curved circular arcs. The same shape is observed for fibroblast-populated collagen gels that are pinned to a flat substrate. Quantitative image analysis reveals that, in both cases, arc radii increase with the spanning distance between the pinning points. Although the Laplace law for interfaces under tension predicts circular arcs, it cannot explain the observed dependence on the spanning distance. Computer simulations and theoretical modeling demonstrate that filamentous network mechanics and contractility give rise to a modified Laplace law that quantitatively explains our experimental findings on both cell and tissue scales. Our model in conjunction with actomyosin inhibition experiments further suggests that cell shape is regulated by two different control modes related to motor contractility and structural changes in the actin cytoskeleton.


Assuntos
Forma Celular , Citoesqueleto/metabolismo , Amidas/farmacologia , Animais , Fenômenos Biomecânicos , Bovinos , Adesão Celular , Linhagem Celular Tumoral , Simulação por Computador , Elasticidade , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Camundongos , Modelos Biológicos , Miosina Tipo II/antagonistas & inibidores , Piridinas/farmacologia , Ratos , Engenharia Tecidual , Quinases Associadas a rho/antagonistas & inibidores
17.
Dev Biol ; 306(2): 560-71, 2007 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-17462622

RESUMO

Polysialic acid (PSA) is a developmentally regulated carbohydrate attached to the neural cell adhesion molecule (NCAM). PSA is involved in dynamic processes like cell migration, neurite outgrowth and neuronal plasticity. In mammals, polysialylation of NCAM is catalyzed independently by two polysialyltransferases, STX (ST8Sia II) and PST (ST8Sia IV), with STX mainly acting during early development and PST at later stages and into adulthood. Here, we functionally characterize zebrafish Stx and Pst homolog genes during fish development and evaluate their catalytic affinity for NCAM in vitro. Both genes have the typical gene architecture and share conserved synteny with their mammalian homologues. Expression analysis, gene-targeted knockdown experiments and in vitro catalytic assays indicate that zebrafish Stx is the principal--if not unique--polysialyltransferase performing NCAM-PSA modifications in both developing and adult fish. The knockdown of Stx exclusively affects PSA synthesis, producing defects in axonal growth and guidance. Zebrafish Pst is in principle capable of synthesizing PSA, however, our data argue against a fundamental function of the enzyme during development. Our findings reveal an important divergence of Stx and Pst enzymes in vertebrates, which is also characterized by a differential gene loss and rapid evolution of Pst genes within the bony-fish class.


Assuntos
Evolução Biológica , Moléculas de Adesão de Célula Nervosa/fisiologia , Sialiltransferases/fisiologia , Sequência de Aminoácidos , Animais , Axônios/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Mamíferos , Dados de Sequência Molecular , Oligonucleotídeos/química , Homologia de Sequência de Aminoácidos , Ácidos Siálicos/metabolismo , Sialiltransferases/metabolismo , Especificidade da Espécie , Peixe-Zebra
18.
Biochem Biophys Res Commun ; 318(4): 1079-84, 2004 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-15147984

RESUMO

Mutations in the human spastin gene (SPG4) cause the most prevalent form of autosomal dominant hereditary spastic paraplegia (HSP), a neurodegenerative disorder characterised by progressive weakness and spasticity of the lower limbs. We address the question of intracellular localisation of spastin. Using polyclonal antibodies against N-terminal spastin sequences, we find that the native protein is localised in both the perinuclear cytoplasm and the nucleus. To identify structural motifs within the protein that can explain entry into the nucleus, we developed a reporter system to test nuclear localisation sequence (NLS)-functionality based on four in-frame fused copies of green fluorescent protein. Using this novel tool we demonstrate that spastin carries two NLSs located in exons 1 and 6. Both are independently functional in mediating nuclear entry.


Assuntos
Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/metabolismo , Núcleo Celular/metabolismo , Proteínas Luminescentes/genética , Sinais de Localização Nuclear/química , Sinais de Localização Nuclear/metabolismo , Adenosina Trifosfatases , Motivos de Aminoácidos , Anticorpos/química , Proteínas de Ligação ao Cálcio/genética , Éxons/genética , Imunofluorescência , Vetores Genéticos , Proteínas de Fluorescência Verde , Células HeLa , Humanos , Espaço Intracelular/metabolismo , Sinais de Localização Nuclear/genética , Oligonucleotídeos/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Espastina , Transfecção
19.
Immunobiology ; 205(1): 108-19, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11999340

RESUMO

Reggie-1/flotillin-2 is a plasma membrane-associated cytoplasmic protein, which defines non-caveolar raft microdomains. Reggie-1/flotillin-2 is enriched in detergent insoluble (TX100) membrane fractions (DIG), co-localizes with activated GPI-linked proteins and the fyn-kinase in neurons and T cells, and thus apparently participates in the assembly of protein complexes essential for signal transduction. In T cells activated by crosslinking the GPI-linked protein Thy-1 or by crosslinking the ganglioside GM1, reggie-1/flotillin-2 co-localizes with the T cell receptor. To determine whether reggie-1/flotillin-2 is also expressed in B cells, primary B cells from human blood and cell lines representing the developmental stages of pro, pre, mature and plasma B cells were analyzed by Western blotting, RT-PCR and immunofluorescence. Here, we show that reggie-1/flotillin-2 is expressed throughout B cell development, as well as in primary B cells, purified by cell sorting. On non-activated mature B cell Raji cell line we found reggie-1/flotillin-2 are exclusively in the detergent (TX100) insoluble membrane fractions that are staining positive for the raft marker GM1. Immunofluorescence microscopy showed that reggie-1/flotillin-2 is localized at the plasma membrane and marks intracellular spots in PBMCs. Confocal co-localization studies showed that reggie-1/flotillin-2 is associated with the plasma membrane, and the centrosomes (microtubule organizing centers) in these PBMCs. Comparison of reggie-1/flotillin-2 cDNA sequences with the genomic sequence database allowed us to determine the exon/intron structures in mouse and human. The gene organizations are highly conserved suggesting an important function of reggie-1/flotillin-2. Since reggie/flotillin proteins co-cluster with the T cell receptor and fyn kinases upon T cell stimulation, our findings of reggie-1/flotillin-2 in B cells suggest a similar role in B cell function.


Assuntos
Subpopulações de Linfócitos B/imunologia , Proteínas de Peixes/biossíntese , Leucócitos Mononucleares/imunologia , Proteínas de Membrana/biossíntese , Proteínas do Tecido Nervoso/biossíntese , Animais , Subpopulações de Linfócitos B/metabolismo , Subpopulações de Linfócitos B/ultraestrutura , Western Blotting , Membrana Celular/imunologia , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Células Cultivadas , Centrossomo/imunologia , Centrossomo/metabolismo , Centrossomo/ultraestrutura , Proteínas de Peixes/imunologia , Imunofluorescência , Humanos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/ultraestrutura , Proteínas de Membrana/imunologia , Camundongos , Proteínas do Tecido Nervoso/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
Immunobiology ; 206(5): 528-36, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12607728

RESUMO

Complement receptor II (CR2) also known as CD21 is the receptor for C3d on immune complexes. In humans it serves as a receptor for the Epstein-Barr virus (EBV). CR2 is expressed on B cells and in low density in the T cell lineage. EBV can infect T cells and EBV-positive T lymphomas have been described. Although CR2 mRNA is readily detectable in T cells, the function of CR2 in human T lymphocytes remains elusive. Here we have analyzed the expression of CR2 in normal and activated T cells. PCR analyses and immunofluorescence/confocal microscopy of peripheral blood T cells and of activated T cells shows considerable reduction in CR2 mRNA and protein expression upon activation. The downregulation of CR2 expression may modulate life span or immunological reactivity of T cells and the susceptibility of cells to infection by lymphotropic viruses.


Assuntos
Ativação Linfocitária/imunologia , Receptores de Complemento 3d/análise , Receptores de Complemento 3d/imunologia , Linfócitos T/imunologia , Linfócitos B/imunologia , Antígenos CD28/imunologia , Antígenos CD28/metabolismo , Complexo CD3/imunologia , Complexo CD3/metabolismo , Linhagem Celular , Reagentes de Ligações Cruzadas/farmacologia , Regulação para Baixo , Citometria de Fluxo , Regulação da Expressão Gênica , Humanos , Interleucina-2/imunologia , Interleucina-2/farmacologia , Microscopia Confocal , Reação em Cadeia da Polimerase , Proteínas/análise , RNA Mensageiro/análise , Receptores de Complemento 3d/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA