Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1380660, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720894

RESUMO

Introduction: Babesia bovis, a tick-borne apicomplexan parasite causing bovine babesiosis, remains a significant threat worldwide, and improved and practical vaccines are needed. Previous studies defined the members of the rhoptry associated protein-1 (RAP-1), and the neutralization-sensitive rhoptry associated protein-1 related antigen (RRA) superfamily in B. bovis, as strong candidates for the development of subunit vaccines. Both RAP-1 and RRA share conservation of a group of 4 cysteines and amino acids motifs at the amino terminal end (NT) of these proteins. Methods and results: Sequence comparisons among the RRA sequences of several B. bovis strains and other Babesia spp parasites indicate a high level of conservation of a 15-amino acid (15-mer) motif located at the NT of the protein. BlastP searches indicate that the 15-mer motif is also present in adenylate cyclase, dynein, and other ATP binding proteins. AlphaFold2 structure predictions suggest partial exposure of the 15-mer on the surface of RRA of three distinct Babesia species. Antibodies in protected cattle recognize a synthetic peptide representing the 15-mer motif sequence in iELISA, and rabbit antibodies against the 15-mer react with the surface of free merozoites in immunofluorescence. Discussion and conclusion: The presence of the 15-mer-like regions in dynein and ATP-binding proteins provides a rationale for investigating possible functional roles for RRA. The demonstrated presence of a surface exposed B-cell epitope in the 15-mer motif of the B. bovis RRA, which is recognized by sera from protected bovines, supports its inclusion in future subunit epitope-based vaccines against B. bovis.


Assuntos
Antígenos de Protozoários , Babesia bovis , Babesiose , Proteínas de Protozoários , Animais , Bovinos , Motivos de Aminoácidos , Sequência de Aminoácidos , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Babesia bovis/imunologia , Babesiose/imunologia , Babesiose/parasitologia , Babesiose/prevenção & controle , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/parasitologia , Doenças dos Bovinos/prevenção & controle , Sequência Conservada , Epitopos de Linfócito B/imunologia , Proteínas de Protozoários/imunologia , Vacinas Protozoárias/imunologia
2.
Pathogens ; 13(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38535562

RESUMO

Ovine herpesvirus 2 (OvHV-2) and bovine herpesvirus 4 (BoHV-4) are gamma herpesviruses that belong to the genera Macavirus and Rhadinovirus, respectively. As with all herpesviruses, both OvHV-2 and BoHV-4 express glycoprotein B (gB), which plays an essential role in the infection of host cells. In that context, it has been demonstrated that a BoHV-4 gB-null mutant is unable to infect host cells. In this study, we used homologous recombination to insert OvHV-2 ORF 8, encoding gB, into the BoHV-4 gB-null mutant genome, creating a chimeric BoHV-4 virus carrying and expressing OvHV-2 gB (BoHV-4∆gB/OvHV-2-gB) that was infectious and able to replicate in vitro. We then evaluated BoHV-4∆gB/OvHV-2-gB as a potential vaccine candidate for sheep-associated malignant catarrhal fever (SA-MCF), a fatal disease of ungulates caused by OvHV-2. Using rabbits as a laboratory model for MCF, we assessed the safety, immunogenicity, and efficacy of BoHV-4∆gB/OvHV-2-gB in an immunization/challenge trial. The results showed that while BoHV-4∆gB/OvHV-2-gB was safe and induced OvHV-2 gB-specific humoral immune responses, immunization conferred only 28.5% protection upon challenge with OvHV-2. Therefore, future studies should focus on alternative strategies to express OvHV-2 proteins to develop an effective vaccine against SA-MCF.

3.
Vet Clin Pathol ; 52(4): 716-721, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38012962

RESUMO

B-cell leukemia is a rare form of hematologic neoplasia in sheep, especially in adult animals. We present a case report of a 5-year-old WhiteFace Sheep wether with suspected acute lymphoblastic leukemia. The patient, a second-generation relative of ewes experimentally inoculated with atypical scrapie, exhibited acute lethargy and loss of appetite. Laboratory investigation revealed marked leukocytosis, lymphocytosis, and abnormal serum chemistry panel results. Microscopic examination of blood and bone marrow smears exhibited a high percentage of large neoplastic cells with lymphoid characteristics. Histopathologic analysis of the spleen, liver, lungs, and other organs confirmed the presence of widespread tissue infiltration by neoplastic cells. Immunohistochemical labeling demonstrated strong intracytoplasmic labeling for CD20, consistent with B-cell neoplasia. Flow cytometric analysis confirmed the B-cell lineage of the neoplastic cells. Screening for bovine leukemia virus, which can experimentally cause leukemia in sheep, yielded a negative result. In this case, the diagnosis of B-cell leukemia was supported by a comprehensive panel of diagnostic evaluations, including cytology, histopathology, immunohistochemistry, and immunophenotyping. This case report highlights the significance of accurate diagnosis and classification of hematologic neoplasia in sheep, emphasizing the need for immunophenotyping to aid in the diagnosis of B-cell leukemia. It also emphasizes the importance of considering spontaneous leukemia as a differential diagnosis in sheep with lymphoid neoplasia, especially in the absence of circulating infectious diseases.


Assuntos
Leucemia Linfocítica Crônica de Células B , Linfocitose , Linfoma , Doenças dos Ovinos , Masculino , Animais , Ovinos , Feminino , Leucemia Linfocítica Crônica de Células B/patologia , Leucemia Linfocítica Crônica de Células B/veterinária , Linfoma/veterinária , Baço/patologia , Linfocitose/patologia , Linfocitose/veterinária , Imunofenotipagem/veterinária , Citometria de Fluxo/veterinária , Doenças dos Ovinos/diagnóstico
4.
Front Cell Infect Microbiol ; 12: 870852, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35521220

RESUMO

Babesia bigemina is a tick-borne apicomplexan hemoprotozoan responsible for bovine babesiosis. The current drugs used for bovine babesiosis treatment have several drawbacks, including toxicity, the lack of effectiveness to clear the parasite, and potential to develop resistance. Identifying compounds that target essential and unique parasite metabolic pathways is a rational approach toward finding alternative drug treatments. Based on the genome sequence and transcriptomics analysis, it can be inferred that anaerobic glycolysis is the dominant adenosine triphosphate (ATP) supply for Babesia, and lactate dehydrogenase (LDH) is one of the essential enzymes in this pathway. Furthermore, the Babesia LDH sequence is distinct from its bovine homologue and thus a potential chemotherapeutic target that would result in decreasing the ATP supply to the parasite but not to the host. Gossypol is a known efficient specific inhibitor of LDH in the sensu stricto B. bovis and the sensu lato B. microti, among other related parasites, but no such data are currently available in the sensu stricto B. bigemina parasites. Hereby, we show that the LDH amino acid sequence is highly conserved among sensu stricto but not in sensu lato Babesia spp. A predictive structural analysis of B. bigemina LDH showed the conservation of the key amino acids involved in the binding to gossypol compared to B. bovis. Gossypol has a significant (P < 0.0001) inhibitory effect on the in vitro growth of B. bigemina, with IC50 of 43.97 mM after 72 h of treatment. The maximum IC (IC98) was observed at 60 mM gossypol. However, a significant effect on the viability of cattle PBMC was observed when the cells were cultured with 60 mM (IC98) gossypol compared with DMSO-exposed control cells. Interestingly, B. bigemina cultured at 3% oxygen expresses significantly higher levels of LDH and is more resistant to gossypol than the parasites maintained at ambient conditions containing ~20% oxygen. Altogether, the results suggest the potential of gossypol as an effective drug against B. bigemina infection, but the risk of host toxicity at therapeutic doses should be further evaluated in in vivo studies.


Assuntos
Babesia bovis , Babesia , Babesiose , Doenças dos Bovinos , Gossipol , Trifosfato de Adenosina , Animais , Babesia bovis/genética , Babesiose/tratamento farmacológico , Babesiose/parasitologia , Bovinos , Doenças dos Bovinos/parasitologia , Gossipol/farmacologia , L-Lactato Desidrogenase/farmacologia , Leucócitos Mononucleares , Oxigênio
5.
Pathogens ; 10(11)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34832541

RESUMO

Babesia, Cytauxzoon and Theileria are tick-borne apicomplexan parasites of the order Piroplasmida, responsible for diseases in humans and animals. Members of the piroplasmid rhoptry-associated protein-1 (pRAP-1) family have a signature cysteine-rich domain and are important for parasite development. We propose that the closely linked B. microti genes annotated as BMR1_03g00947 and BMR1_03g00960 encode two paralogue pRAP-1-like proteins named BmIPA48 and Bm960. The two genes are tandemly arranged head to tail, highly expressed in blood stage parasites, syntenic to rap-1 genes of other piroplasmids, and share large portions of an almost identical ~225 bp sequence located in their 5' putative regulatory regions. BmIPA48 and Bm960 proteins contain a N-terminal signal peptide, share very low sequence identity (<13%) with pRAP-1 from other species, and harbor one or more transmembrane domains. Diversification of the piroplasmid-confined prap-1 family is characterized by amplification of genes, protein domains, and a high sequence polymorphism. This suggests a functional involvement of pRAP-1 at the parasite-host interface, possibly in parasite adhesion, attachment, and/or evasion of the host immune defenses. Both BmIPA48 and Bm960 are recognized by antibodies in sera from humans infected with B. microti and might be promising candidates for developing novel serodiagnosis and vaccines.

6.
Infect Immun ; 87(12)2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31570561

RESUMO

Theileria parva is the causative agent of East Coast fever (ECF), a tick-borne disease that kills over a million cattle each year in sub-Saharan Africa. Immune protection against T. parva involves a CD8+ cytotoxic T cell response to parasite-infected cells. However, there is currently a paucity of knowledge regarding the role played by innate immune cells in ECF pathogenesis and T. parva control. Here, we demonstrate an increase in intermediate monocytes (CD14++ CD16+) with a concomitant decrease in the classical (CD14++ CD16-) and nonclassical (CD14+ CD16+) subsets at 12 days postinfection (dpi) during lethal infection but not during nonlethal T. parva infection. Ex vivo analyses of monocytes demonstrated upregulation of interleukin-1 beta (IL-1ß) and tumor necrosis factor alpha (TNF-α) mRNA and increased nitric oxide production during T. parva lethal infection compared to nonlethal infection at 10 dpi. Interestingly, no significant differences in peripheral blood parasite loads were observed between lethally and nonlethally infected animals at 12 dpi. In vitro stimulation with T. parva schizont-infected cells or Escherichia coli lipopolysaccharide (LPS) resulted in significant upregulation of IL-1ß production by monocytes from lethally infected cattle compared to those from nonlethally infected animals. Strikingly, monocytes from lethally infected animals produced significant amounts of IL-10 mRNA after stimulation with T. parva schizont-infected cells. In conclusion, we demonstrate that T. parva infection leads to alterations in the molecular and functional phenotypes of bovine monocytes. Importantly, since these changes primarily occur in lethal infection, they can serve as biomarkers for ECF progression and severity, thereby aiding in the standardization of protection assessment for T. parva candidate vaccines.


Assuntos
Monócitos/imunologia , Theileria parva/imunologia , Theileriose/imunologia , Animais , Bovinos , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Lipopolissacarídeos/imunologia , Carga Parasitária , Vacinas Protozoárias/imunologia , RNA Mensageiro/genética , Linfócitos T Citotóxicos/imunologia , Theileriose/parasitologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
7.
Infect Immun ; 85(7)2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28438980

RESUMO

Coxiella burnetii is the causative agent of Q fever, a zoonotic disease that threatens both human and animal health. Due to the paucity of experimental animal models, little is known about how host factors interface with bacterial components and affect pathogenesis. Here, we used Drosophila melanogaster, in conjunction with the biosafety level 2 (BSL2) Nine Mile phase II (NMII) clone 4 strain of C. burnetii, as a model to investigate host and bacterial components implicated in infection. We demonstrate that adult Drosophila flies are susceptible to C. burnetii NMII infection and that this bacterial strain, which activates the immune deficiency (IMD) pathway, is able to replicate and cause mortality in the animals. We show that in the absence of Eiger, the only known tumor necrosis factor (TNF) superfamily homolog in Drosophila, Coxiella-infected flies exhibit reduced mortality from infection. We also demonstrate that the Coxiella type 4 secretion system (T4SS) is critical for the formation of the Coxiella-containing vacuole and establishment of infection in Drosophila Altogether, our data reveal that the Drosophila TNF homolog Eiger and the Coxiella T4SS are implicated in the pathogenesis of C. burnetii in flies. The Drosophila/NMII model mimics relevant aspects of the infection in mammals, such as a critical role of host TNF and the bacterial T4SS in pathogenesis. Our work also demonstrates the usefulness of this BSL2 model to investigate both host and Coxiella components implicated in infection.


Assuntos
Coxiella burnetii/imunologia , Coxiella burnetii/patogenicidade , Modelos Animais de Doenças , Drosophila melanogaster/microbiologia , Interações Hospedeiro-Patógeno , Febre Q/microbiologia , Animais , Suscetibilidade a Doenças , Proteínas de Drosophila/deficiência , Drosophila melanogaster/imunologia , Proteínas de Membrana/deficiência , Febre Q/imunologia , Análise de Sobrevida , Sistemas de Secreção Tipo IV/genética , Sistemas de Secreção Tipo IV/metabolismo , Vacúolos/microbiologia
8.
PLoS One ; 11(11): e0166088, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27824940

RESUMO

Insects are not only major vectors of mammalian viruses, but are also host to insect-restricted viruses that can potentially be transmitted to mammals. While mammalian innate immune responses to arboviruses are well studied, less is known about how mammalian cells respond to viruses that are restricted to infect only invertebrates. Here we demonstrate that IIV-6, a DNA virus of the family Iridoviridae, is able to induce a type I interferon-dependent antiviral immune response in mammalian cells. Although IIV-6 is a DNA virus, we demonstrate that the immune response activated during IIV-6 infection is mediated by the RIG-I-like receptor (RLR) pathway, and not the canonical DNA sensing pathway via cGAS/STING. We further show that RNA polymerase III is required for maximal IFN-ß secretion, suggesting that viral DNA is transcribed by this enzyme into an RNA species capable of activating the RLR pathway. Finally, we demonstrate that the RLR-driven mammalian innate immune response to IIV-6 is functionally capable of protecting cells from subsequent infection with the arboviruses Vesicular Stomatitis virus and Kunjin virus. These results represent a novel example of an invertebrate DNA virus activating a canonically RNA sensing pathway in the mammalian innate immune response, which reduces viral load of ensuing arboviral infection.


Assuntos
Proteína DEAD-box 58/fisiologia , Infecções por Vírus de DNA/imunologia , Imunidade Inata/imunologia , Iridoviridae/imunologia , Animais , Linhagem Celular , Immunoblotting , Interferon beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Interferência de RNA , RNA Polimerase III/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
9.
Parasitol Int ; 60(1): 13-8, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20884375

RESUMO

A novel Babesia bovis gene family encoding proteins with similarities to the Plasmodium 6cys protein family was identified by TBLASTN searches of the B. bovis genome using the sequence of the P. falciparum PFS230 protein as query, and was termed Bbo-6cys gene family. The Bbo-cys6 gene family contains six genes termed Bbo-6cys-A, B, C, D, E and F encoding for proteins containing an arrangement of 6 cysteine residues. The Bbo-6cys genes A, B, C, D, and E are tandemly arranged as a cluster of Chromosome 2 in the B. bovis genome, whereas gene F is located in a distal region in the same chromosome. The Bbo-6cys-E gene, with higher homology to PFS230, was selected for further examination. Immunoblot analysis using recombinant Bbo-6cys-E protein and B. bovis-positive bovine serum demonstrated expression by the parasite and immunogenicity during B. bovis infection. Immunofluorescence analysis using anti-Bbo-6cys-E antibodies confirmed expression of Bbo-6cys-E in in vitro blood stages of B. bovis. In addition, polyclonal antisera against both recombinant Bbo-6cys-E and specific synthetic peptides containing predicted B-cell epitopes of Bbo-6cys-E, significantly inhibited erythrocyte invasion by B. bovis in in vitro neutralization assays, suggesting an important functional role for this protein. Identification of this new gene family in B. bovis and further investigation on its biological significance may aid our understanding of the bovine, tick and parasite relationships and the development of improved control methods against B. bovis infection in cattle.


Assuntos
Babesia bovis/genética , Bovinos/parasitologia , Genes de Protozoários , Família Multigênica , Animais , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/genética , Babesia bovis/imunologia , Babesia bovis/metabolismo , Clonagem Molecular , DNA de Protozoário/genética , Epitopos de Linfócito B/imunologia , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Feminino , Expressão Gênica , Immunoblotting , Camundongos , Camundongos Endogâmicos BALB C , Testes de Neutralização , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Proteínas Recombinantes/genética
10.
Vaccine ; 22(3-4): 467-74, 2004 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-14670329

RESUMO

Pigs were immunised with recombinant BCG (rBCG) expressing a truncated form of GP5 (lacking the first 30 NH(2)-terminal residues) (rBCGGP5) and M protein (rBCGM) of porcine reproductive and respiratory syndrome virus (PRRSV). At 30 days post-inoculation (dpi), pigs inoculated with rBCGGP5 and rBCGM developed a specific humoral immune response against the viral proteins, as detected by commercial ELISA and Western blot tests, and at 60 dpi, three out of five animals developed neutralizing antibodies with titers ranging from 1:4 to 1:8. At 67 dpi, an IFN-gamma response against BCG antigens, but not against the viral proteins, was detected by ELISPOT in inoculated pigs. Following challenge with a pathogenic strain of PRRSV, pigs inoculated with rBCG showed lower (P<0.05) temperature, viremia and virus load in bronchial lymph nodes than control animals, suggesting the establishment of partial protection against PRRSV infection.


Assuntos
Adjuvantes Imunológicos/farmacologia , Anticorpos Antivirais/biossíntese , Vacina BCG/imunologia , Síndrome Respiratória e Reprodutiva Suína/imunologia , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Proteínas do Envelope Viral/genética , Proteínas Virais/imunologia , Animais , Formação de Anticorpos/imunologia , Vacina BCG/química , Western Blotting , Temperatura Corporal , Ensaio de Imunoadsorção Enzimática , Imunidade Celular/imunologia , Linfonodos/virologia , Tonsila Palatina/virologia , Síndrome Respiratória e Reprodutiva Suína/sangue , Vírus da Síndrome Respiratória e Reprodutiva Suína/química , Suínos , Proteínas do Envelope Viral/biossíntese , Carga Viral
11.
Vaccine ; 21(1-2): 21-9, 2002 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-12443659

RESUMO

Mycobacterium bovis BCG was used to express a truncated form of GP5 (lacking the first 30 NH(2)-terminal residues) and M protein of porcine reproductive and respiratory syndrome virus (PRRSV). The PRRSV proteins were expressed in BCG under control of the mycobacterial hsp60 gene promoter either in the mycobacterial cytoplasm (BCGGP5cyt and BCGMcyt) or as MT19-fusion proteins on the mycobacterial surface (BCGGP5surf and BCGMsurf). Mice inoculated with BCGGP5surf and BCGMsurf developed antibodies against the viral proteins at 30 days post-inoculation (dpi) as detected by ELISA and Western blot. By 60 dpi, the animals developed titer of neutralizing antibodies of 8. A PRRSV-specific gamma interferon response was also detected in splenocytes of recombinant BCG-inoculated mice at 60 and 90 dpi. These results indicate that BCG was able to express antigens of PRRSV and elicit an immune response against the viral proteins in mice.


Assuntos
Mycobacterium bovis/genética , Proteínas do Envelope Viral/imunologia , Proteínas da Matriz Viral/imunologia , Animais , Anticorpos Antivirais/imunologia , Western Blotting , Clonagem Molecular , Ensaio de Imunoadsorção Enzimática , Expressão Gênica , Vetores Genéticos , Camundongos , Camundongos Endogâmicos BALB C , Peptídeos/síntese química , Peptídeos/química , Peptídeos/imunologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/química , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/isolamento & purificação , Proteínas Recombinantes/imunologia , Suínos , Vacinação , Vacinas de DNA/imunologia , Proteínas do Envelope Viral/genética , Proteínas da Matriz Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA